Skip to main content
Log in

Short- and Long-Range Order in Ytterbium-Doped Zirconia

  • Published:
Inorganic Materials Aims and scope

Abstract

Raman spectra of zirconia doped with 10, 20, and 25% ytterbia have been measured using light sources with wavelengths of 785 and 532 nm. A number of bands have been shown to depend on the laser wavelength used, that is, they cannot be Stokes bands. Analysis of Stokes bands has made it possible to describe the structure of the samples containing 10 and 20% ytterbium as a defect pyrochlore structure, which points to changes in the local symmetry of oxygen around cations on cooling to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.

  2. Perfil’ev, M.V., Demin, A.K., Kuzin, B.L., and Lipilin, A.S., Vysokotemperaturnyi elektroliz gazov (High-Temperature Electrolysis of gases), Moscow: Nauka, 1988.

  3. Chebotin, V.N., Khimicheskaya diffuziya v tverdykh telakh (Chemical Diffusion in Solids), Moscow: Nauka, 1989.

  4. Balkanski, M., Takahashi, T., and Tuller, H.L., Solid State Ionics, Amsterdam: Elsevier, 1992.

    Google Scholar 

  5. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: SPbGU, 2000, vol. 1.

  6. Singhal, S.C. and Kendall, K., High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Amsterdam: Elsevier, 2003.

    Google Scholar 

  7. Maier, J., Physical Chemistry of Ionic Materials: Ions and Electrons in Solids, New York: Wiley, 2004.

    Book  Google Scholar 

  8. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: SPbGU, 2010, vol. 2.

  9. Ramadhani, F., Hussain, M.A., Mokhlis, H., and Hajimolana, S., Optimization strategies for solid oxide fuel cell (SOFC) application: a literature survey, Renew. Sustain. Energy Rev., 2017, vol. 76, pp. 460–484.

    Article  Google Scholar 

  10. Liu, T., Zhang, X., Wang, X., Yu, J., and Li, L.A., Review of zirconia-based electrolytes, Ionics, 2016, vol. 22, pp. 2249–2262.

    Article  CAS  Google Scholar 

  11. Shkerin, S.N., Surface phase transition in oxygen-ion-conducting fluorite solid solutions, Izv. Akad. Nauk, Ser. Fiz., 2002, vol. 66, pp. 890–891.

    CAS  Google Scholar 

  12. Shkerin, S., The YSZ electrolyte surface layer: existence, properties and effect on electrode characteristics, Fuel Cell Technologies: State and Perspectives, Sammes, N. , Eds., New York: Springer, 2005, pp. 301–306.

    Google Scholar 

  13. Ivanov, V., Shkerin, S., Rempel, A., Khrustov, V., Lipilin, A., and Nikonov, A., The grain size effect for the YSZ grain boundary conductivity, J. Nanosci. Nanotechnol., 2010, vol. 10, no. 11, pp. 7411–7415.

    Article  CAS  Google Scholar 

  14. Ivanov, V.V., Shkerin, S.N., Rempel’, Al.A., Khrustov, V.R., Lipilin, A.S., and Nikonov, A.V., Electrical conductivity of zirconia-based solid electrolyte with submicron grain size, Dokl. Phys. Chem., 2010, vol. 433, no. 1, pp. 125–127.

    Article  CAS  Google Scholar 

  15. Vlasov, A.N., Temperature-dependent electrical conductivity of zirconia–rare-earth dioxide solid electrolytes, Elektrokhimiya, 1989, vol. 25, no. 5, pp. 699–702.

    CAS  Google Scholar 

  16. Vlasov, A.N., Composition dependence of electrical conductivity for zirconia-based solid electrolytes, Elektrokhimiya, 1989, vol. 25, no. 10, pp. 1313–1316.

    CAS  Google Scholar 

  17. Vlasov, A.N. and Shulik, I.G., Effect of dopant ionic radius on the electrical conductivity of zirconia–rare-earth oxide solid electrolytes, Elektrokhimiya, 1990, vol. 26, no. 7, pp. 909–913.

    CAS  Google Scholar 

  18. Vlasov, A.N., Aging behavior of ZrO2 + Y2O3 and ZrO2 + Ho2O3 solid oxide electrolytes, Elektrokhimiya, 1983, vol. 19, no. 2, pp. 1624–1628.

    CAS  Google Scholar 

  19. Vlasov, A.N. and Inozemtsev, M.V., Aging kinetics of zirconia-based metastable solid electrolytes, Elektrokhimiya, 1985, vol. 21, no. 6, pp. 764–787.

    CAS  Google Scholar 

  20. Vlasov, A.N. and Perfiliev, M.V., Ageing of ZrO2-based solid electrolyte, Solid State Ionics, 1987, vol. 25, pp. 245–253.

    Article  CAS  Google Scholar 

  21. Vlasov, A.N., Aging kinetics of single-phase zirconia-based solid electrolytes, Elektrokhimiya, 1991, vol. 27, no. 11, pp. 1479–1483.

    CAS  Google Scholar 

  22. Keramidas, V.G. and White, W.B., Raman spectra of oxides with the fluorite structure, J. Chem. Phys., 1973, vol. 59, no. 3, pp. 1561–1562.

    Article  Google Scholar 

  23. Lomonova, E.E., Agarkov, D.A., Borika, M.A., Eliseeva, G.M., Kulebyakina, A.V., Kuritsyna, I.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Chislov, A.S., and Tabachkova, N.Yu., ZrO2–Sc2O3 solid electrolytes doped with Yb2O3 or Y2O3, Russ. J. Electrochem., 2020, vol. 56, no. 2, pp. 118–123.

    Article  CAS  Google Scholar 

  24. Long, D.A., The Raman Effect: A Unifed Treatment of the Theory of Raman Scattering by Molecules, New York: Wiley, 2002.

    Book  Google Scholar 

  25. Cui, J. and Hope, G., Raman and fluorescence spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7, J. Spectrosc., 2015, paper 940172. https://doi.org/10.1155/2015/940172

  26. Timofeev, V.B., Opticheskaya spektroskopiya ob"emnykh poluprovodnikov i nanostruktur (Optical Spectroscopy of Bulk Semiconductors and Nanostructures), St. Petersburg: Lan’, 2014.

  27. Khabibrakhmanov, R., Shurukhina, A., Rudakova, A., Barinov, D., Ryabchuk, V., Emeline, A., Kataeva, G., and Serpone, N., UV-induced defect formation in cubic ZrO2: optical demonstration of Y, Yb and Er dopants interacting with photocarriers, Chem. Phys. Lett., 2020, vol. 742, paper 137136.

  28. Paul, B., Singh, K., Jaron, T., Roy, A., and Chowdhury, A., Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: the role of oxygen to induce local disordered states, J. Alloys Compd., 2016, vol. 686, pp. 130–136.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Facilities Center, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

We are grateful to A. Akhmadeev for his assistance with this study and V.P. Gorelov for providing the samples.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, theme registration no. AAAA-A19-119020190044-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shkerin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkerin, S.N., Ul’yanova, E.S. & Vovkotrub, E.G. Short- and Long-Range Order in Ytterbium-Doped Zirconia. Inorg Mater 57, 1145–1151 (2021). https://doi.org/10.1134/S0020168521100137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100137

Keywords:

Navigation