Skip to main content
Log in

Multiple Non-Canonical Base-Stacking Interactions as One of the Major Determinants of RNA Tertiary Structure Organization

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Stacking interactions of heterocyclic bases of ribonucleotides are one of the most important factors in the organization of RNA secondary and tertiary structure. Most of these (canonical) interactions are formed between adjacent residues in RNA polynucleotide chains. However, with the accumulation of data on the atomic tertiary structures of various RNAs and their complexes with proteins, it has become clear that nucleotide residues that are not adjacent in the polynucleotide chains and are sometimes separated in the RNA primary structure by tens or hundreds of nucleotides can interact via (non-canonical) base stacking. This paper presents an exhaustive database of such nonadjacent base-stacking elements (NA-BSEs) and their environment in the macromolecules of natural and synthetic RNAs. Analysis of these data showed that NA-BSE-forming nucleotides, on average, account for about a quarter of all nucleotides in a particular RNA and, therefore, should be considered as bona fide motifs of the RNA tertiary structure. We also classified NA-BSEs by their location in RNA macromolecules. It was shown that the structure-forming role of NA-BSEs involves compact folding of single-stranded RNA loops, transformation of double-stranded bulges into imperfect helices, and binding of RNA regions distant in the primary and secondary RNA structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

BIE:

base-intercalated element

BWE:

base-wedged element

DC:

double-crossing

NA-BSE:

nonadjacent base-stacking element

RNase P:

ribonuclease P

References

  1. Fresco, J. R., Alberts, B. M., and Doty, P. (1960) Some molecular details of the secondary structure of ribonucleic acids, Nature, 188, 98-101, https://doi.org/10.1038/188098a0.

    Article  CAS  PubMed  Google Scholar 

  2. Spirin, A. S. (1960) On macromolecular structure of native high-polymer ribonucleic acid in solution, J. Mol. Biol., 2, 436-446, https://doi.org/10.1016/S0022-2836(60)80054-X.

    Article  CAS  Google Scholar 

  3. Butcher, S. E., and Pyle, A. M. (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks, Acc. Chem. Res., 44, 1302-1311, https://doi.org/10.1021/ar200098t.

    Article  CAS  PubMed  Google Scholar 

  4. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B., and Steitz, T. A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. USA, 98, 4899-4903, https://doi.org/10.1073/pnas.081082398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein, D. J., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2001) The kink-turn, EMBO J., 20, 4214-4221, https://doi.org/10.1093/emboj/20.15.4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chawla, M., Chermak, E., Zhang, O., Bujnicki, J. M., Oliva, R., and Cavallo, L. (2017) Occurrence and stability of lone pair–stacking interactions between ribose and nucleobases in functional RNAs, Nucleic Acids Res., 45, 11019-11032, https://doi.org/10.1093/nar/gkx757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baulin, E., Metelev, V., and Bogdanov, A. (2020) Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA–protein complexes, Nucleic Acids Res., 48, 8675-8685,  https://doi.org/10.1093/nar/gkaa610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dallas, A., and Moore, P. B. (1997) The loop E–loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins, Structure, 5, 1639-1653, https://doi.org/10.1016/s0969-2126(97)00311-0.

    Article  CAS  PubMed  Google Scholar 

  9. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678-1685, https://doi.org/10.1126/science.273.5282.1678.

    Article  CAS  PubMed  Google Scholar 

  10. Teplova, M., Malinina, L., Darnell, J. C., Song, J., Lu, M., Abagyan, R., Musunuru, K., Teplov, A., Burley, S. K., Darnell, R. B., and Patel, D. J. (2011) Protein–RNA and protein–protein recognition by DualKH1/2 domains of the neuronal splicing factor Nova-1, Structure, 19, 930-944, https://doi.org/10.1016/j.str.2011.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leontis, N. B., and Zirbel, C. L. (2012) Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking, RNA 3D Structure Analysis and Prediction (Leontis, N., and Westhof, E., eds) Nucleic Acids and Molecular Biology, 27, 282-298, Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-25740-7_13.

  12. Lu, X.-J., Bussemaker, H. J., and Olson, W. K. (2015) DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Res., 43, e142, https://doi.org/10.1093/nar/gkv716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shalybkova, A. A., Mikhailova, D. S., Kulakovskiy, I. V., Fakhranurova, L. I., and Baulin, E. F. (2021) Annotation of the local context of RNA secondary structure improves the classification and prediction of A-minors, RNA, 27, 907-919, https://doi.org/10.1261/rna.078535.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yogesh, K., Gupta, Y. K., Nair, D. T., Wharton, R. P., Aggarwal, A. K. (2008) Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity, Structure, 16, 549-557, https://doi.org/10.1016/j.str.2008.01.006.

    Article  CAS  Google Scholar 

  15. Laura, M., Guogas, L. M., Filman, D. J., Hogle, J. M., and Lee Gehrke, L. (2004) Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication, Science, 306, 2108-2111, https://doi.org/10.1126/science.1103399.

    Article  CAS  Google Scholar 

  16. Mondragón, A. (2013) Structural studies of RNase P, Annu. Rev. Biophys., 42, 537-557, https://doi.org/10.1146/annurev-biophys-083012-130406.

    Article  CAS  PubMed  Google Scholar 

  17. Krasilnikov, A. S., Xiao, Y., Pan, T., and Mondragón, A. (2004) Basis for structural diversity in homologous RNAs, Science, 306, 104-107, https://doi.org/10.1126/science.1101489.

    Article  CAS  PubMed  Google Scholar 

  18. Krasilnikov, A. S., Yang, X., Pan, T., and Mondragón, A. (2003) Crystal structure of the specificity domain of ribonuclease P, Nature, 421, 760-764, https://doi.org/10.1038/nature01386.

    Article  CAS  PubMed  Google Scholar 

  19. Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T., and Mondragón, A. (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA, Nature, 468, 784-789, https://doi.org/10.1038/nature09516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mignon, P., Loverix, S., Steyaert, J., and Geerlings, P. (2005) Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases, Nucleic Acids Res., 33, 1779-1789, https://doi.org/10.1093/nar/gki317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leontis, N. B., and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs, RNA, 7, 499-512, https://doi.org/10.1017/s1355838201002515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noller, H. F., Donohue, J. P., and Gutell, R. R. (2022) The universally conserved nucleotides of the small subunit ribosomal RNAs, RNA, 28, 623-644, https://doi.org/10.1261/rna.079019.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sergiev, P. V., Kiparisov, S. V., Burakovsky, D. E., Lesnyak, D. V., Leonov, A. A., Bogdanov, A. A., and Dontsova, O. A. (2005) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J. Mol. Biol., 353, 116-123, https://doi.org/10.1016/j.jmb.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  24. Walkera, A. S., Russ, W. P., Ranganathanc, R., and Schepartza, A. (2020) RNA sectors and allosteric function within the ribosome, Proc. Natl. Acad. Sci. USA, 117, 19879-19887, https://doi.org/10.1073/pnas.1909634117.

    Article  CAS  Google Scholar 

  25. Peselis, A., and Serganov, A. (2021) Cooperativity and allostery in RNA systems, Methods Mol. Biol., 2253, 255-271, https://doi.org/10.1007/978-1-0716-1154-8_15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their careful reading of the manuscript and constructive suggestions.

Funding

V.M. and A.B. thank Lomonosov Moscow State University and Ministry of Science and Higher Education of the Russian Federation for support (Agreement 1075-15-2021-1949 of 28.09.21).

Author information

Authors and Affiliations

Authors

Contributions

E.B. performed computational work and conformational analysis. V.M. analyzed the data and prepared all figures. A.B. developed the project. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Alexey A. Bogdanov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metelev, V.G., Baulin, E.F. & Bogdanov, A.A. Multiple Non-Canonical Base-Stacking Interactions as One of the Major Determinants of RNA Tertiary Structure Organization. Biochemistry Moscow 88, 792–800 (2023). https://doi.org/10.1134/S000629792306007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792306007X

Keywords

Navigation