Skip to main content
Log in

Identification of Mitogen-activated Protein Kinase from Schizochytrium sp. and Application in Resisting Stress Environments

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Schizochytrium sp. is a marine fungus, which usually lives in the salinity of 40–100% seawater and has unique salt tolerance characteristics. In this study, we explored the candidate mitogen-activated protein kinase (MAPK) related to the salt-tolerant regulatory network from Schizochytrium sp. Firstly, 6 potential MAPK genes from Schizochytrium sp. were identified based on the genome information and bioinformatics analysis. Then, the MAPK gene expression of Schizochytrium sp. under different cultivation conditions locked two genes encoding Mpk6315 and Mpk2022. Furthermore, overexpressing of Mpk6315 in S. cerevisiae enhanced cell growth by 62% while and Mpk2022 overexpression improved the membrane integrity under different stress conditions, indicating that Mpk6315 might play an important role for cell growth and Mpk2022 could help cells to encounter different environmental stressors. This study was the first time to identify the MAPK genes from Schizochytrium sp., which could enlarge the MAPK modules of salt stress tolerance and provide new elements for improving the stress resistance of other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY STATEMENTS

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

SUPPLIMENTARY MATERIALS

Fig. S1 . Plasmid maps. (A) A2022 MAPK pESC-Leu map; (B) A6315 MAPK pESC-Leu map.

Fig. S2 . Agarose gel electrophoresis of pESC-Mpk2022 and pESC-Mpk6315 plasmid construction: (A) Colony PCR of E.coli DH5α containing pESC-Mpk2022 and pESC- Mpk6315 plasmid; (B) Colony PCR of S. cerevisiae yph499 containing pESC- Mpk2022 and pESC- Mpk6315 plasmid.

Fig. S3 . Mpk2022 and Mpk6325 genes of the MAPK pathway is involved in conditional stresses response to cell injury in S. cerevisiae (A) Cell membrane damages of control strain pESC and overexpression strain Mpk2022, Mpk6315 under normal conditions; (B) Cell membrane damages under 0.5 M NaCl; (C) Cell membrane damages under 1 M NaCl; (D) Cell membrane damages under 8% ethanol; (E) Cell membrane damages under 10% ethanol; (F) Cell membrane damages under 37°C; (G) Cell membrane damages under 42°C.

REFERENCES

  1. Jiang, Y., Fan, K.W., Wong, R.D.Y., and Chen, F., J. Agric. Food. Chem., 2004, vol. 52, no. 5, pp. 1196–1200. https://doi.org/10.1021/jf035004c

    Article  CAS  PubMed  Google Scholar 

  2. Chen, H. and Jiang, J.G., J. Cell. Physiol., 2009, vol. 219, no. 2, pp. 251–258. https://doi.org/10.1002/jcp.21715

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y.H., Wei, K.Y., and Smolke, C.D., Annu. Rev. Chem. Biomol. Eng., 2013, vol. 4, pp. 69–102. https://doi.org/10.1146/annurev-chembioeng-061312-103351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turk, M., Mejanelle, L., Sentjurc, M., Grimalt, J.O., Gunde-Cimerman, N., and Plemenitas, A., Extremophiles, 2004, vol. 8, no. 1, pp. 53–61. https://doi.org/10.1007/s00792-003-0360-5

    Article  CAS  PubMed  Google Scholar 

  5. Berezovsky, I.N. and Shakhnovich, E.I., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 36, pp. 12742–12747. https://doi.org/10.1073/pnas.0503890102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colcombet, J. and Hirt, H., Biochem. J, 2008, vol. 413, pp. 217–226. https://doi.org/10.1042/bj20080625

    Article  CAS  PubMed  Google Scholar 

  7. Bardwell, L., Peptides, 2004, vol. 25, no. 9, pp. 1465–1476. https://doi.org/10.1016/j.peptides.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  8. Chang, L. and Karin, M., Nature, 2001, vol. 410, no. 6824, pp. 37–40. https://doi.org/10.1038/35065000

    Article  CAS  PubMed  Google Scholar 

  9. Qi, M. and Elion, E.A., J. Cell Sci., 2005, vol. 118, Pt. 16, pp. 3569–3572. https://doi.org/10.1242/jcs.02470

    Article  CAS  PubMed  Google Scholar 

  10. Tanigawa, M., Kihara, A., Terashima, M., Takahara, T., and Maeda, T., Mol. Cell Biol., 2012, vol. 32, no. 14, pp. 2861–2870. https://doi.org/10.1128/mcb.06111-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strehmel, N., Hoehenwarter, W., Monchgesang, S., Majovsky, P., Kruger, S., Scheel, D., et al., Front. Plant Sci., 2017, vol. 8, p. 13. https://doi.org/10.3389/fpls.2017.01292

    Article  Google Scholar 

  12. Zhang, G., Sun, Z.H., Ren, A., Shi, L., Shi, D.K., Li, X.B., et al., Fungal Genet. Biol., 2017, vol. 104, pp. 6–15. https://doi.org/10.1016/j.fgb.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  13. Li, J.J., Zhou, L., Yin, C.M., Zhang, D.D., Klosterman, S.J., Wang, B.L., et al., Environ. Microbiol., 2019, vol. 21, no. 12, pp. 4852–4874. https://doi.org/10.1111/1462-2920.14846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren, L.J., Sun, L.N., Zhuang, X.Y., Qu, L., Ji, X.J., and Huang, H., Bioprocess Biosyst. Eng., 2014, vol. 37, no. 5, pp. 865–872. https://doi.org/10.1007/s00449-013-1057-5

    Article  CAS  PubMed  Google Scholar 

  15. Sun, X.M., Ren, L.J., Bi, Z.Q., Ji, X.J., Zhao, Q.Y., and Huang, H., Bioresour. Technol., 2018, vol. 267, pp. 438–444. https://doi.org/10.1016/j.biortech.2018.07.079

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J.Y., Zhu, S.Y., Zhang, Y.T., Sun, X.M., Hu, X.C., Huang, H., et al., Bioresour. Technol., 2019, vol. 294, p. 9. https://doi.org/10.1016/j.biortech.2019.122231

    Article  CAS  Google Scholar 

  17. Ren, L.J., Hu, X.C., Zhao, X.Y., Chen, S.L., Wu, Y., Li, D., et al., Sci. Rep., 2017, vol. 7, p.10. https://doi.org/10.1038/s41598-017-03382-9

    Article  CAS  Google Scholar 

  18. Bi, Z.Q., Ren, L.J., Hu, X.C., Sun, X.M., Zhu, S.Y., Ji, X.J., et al., Biotechnol. Biofuels, 2018, vol. 11, p. 249. https://doi.org/10.1186/s13068-018-1250-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B., Nat. Methods, 2008, vol. 5, no. 7, pp. 621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  20. Benjamini, Y. and Hochberg, Y., J. R. Stat. Soc. Ser. B—Stat. Methodol., 1995, vol. 57, no. 1, pp. 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  21. Meng, X. and Zhang, S., Annu. Rev. Phytopathol., 2013, vol. 51, pp. 245–266. https://doi.org/10.1146/annurev-phyto-082712-102314

    Article  CAS  PubMed  Google Scholar 

  22. Banuett, F., Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 249–274. https://doi.org/10.1128/mmbr.62.2.249-274.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, C., Kim, S.K., Willis, S.D., and Cooper, K.F., Microb. Cell (Graz, Austria), 2015, vol. 2, no. 9, pp. 329–342. https://doi.org/10.15698/mic2015.09.226

    Article  CAS  Google Scholar 

  24. San José, C., Monge, R.A., Pérez-Díaz, R., Pla, J., and Nombela, C., J. Bacteriol., 1996, vol. 178, no. 19, pp. 5850–5852. https://doi.org/10.1128/jb.178.19.5850-5852.1996

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Nadal, E. and Posas, F., FEBS J., 2015, vol. 282, no. 17, pp. 3275–3285. https://doi.org/10.1111/febs.13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Román, E., Correia, I., Prieto, D., Alonso, R., and Pla, J., Int. Microbiol., 2020, vol. 23, no. 1, pp. 23–29. https://doi.org/10.1007/s10123-019-00069-1

    Article  CAS  PubMed  Google Scholar 

  27. Valiante, V., Jain, R., Heinekamp, T., and Brakhage, A.A., Fungal Genet. Biol., 2009, vol. 46, no. 12, pp. 909–918. https://doi.org/10.1016/j.fgb.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X., Xu, C., Qian, Y., Liu, R., Zhang, Q., Zeng, G., et al., Environ. Microbiol., 2016, vol. 18, no. 3, pp. 1048–1062. https://doi.org/10.1111/1462-2920.13198

    Article  CAS  PubMed  Google Scholar 

  29. Ceylan, S., Yilan, G., Akbulut, B.S., Poli, A., and Kazan, D., J. Biosci. Bioeng., 2012, vol. 114, no. 1, pp. 45–52. https://doi.org/10.1016/j.jbiosc.2012.02.030

    Article  CAS  PubMed  Google Scholar 

  30. Bramucci, M.G., Larossa, R.A., and Smulski, D.R., Yeast with increased butanol tolerance involving cell wall integrity pathway, butamax tx advanced biofuels l, US Patent no. 8795992 B2, 2009.

  31. Huang, M., Khan, J., Kaur, M., Vanega, J.D.T., Patiño, O.A.A., Ramasubramanian, A.K., et al., Sci. Rep., 2019, vol. 9, no. 1, p. 17036. https://doi.org/10.1038/s41598-019-53593-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Lucena, R.M., Elsztein, C., Simões, D.A., and de Morais, M.A., Jr., J. Appl. Microbiol., 2012, vol. 113, no. 3, pp. 629–640. https://doi.org/10.1111/j.1365-2672.2012.05362.x

    Article  CAS  PubMed  Google Scholar 

  33. Claret, S., Gatti, X., Doignon, F., Thoraval, D., and Crouzet, M., Eukaryot. Cell, 2005, vol. 4, no. 8, pp. 1375–1386. https://doi.org/10.1128/ec.4.8.1375-1386.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Key R&D Program of China (no.: 2019YFA0905700), the National Natural Science Foundation of China (no. 21878151), the Natural Science Foundation of Jiangsu Province (BK20211535) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTD2213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ren.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Jiang, J., Hu, X. et al. Identification of Mitogen-activated Protein Kinase from Schizochytrium sp. and Application in Resisting Stress Environments. Appl Biochem Microbiol 59, 438–449 (2023). https://doi.org/10.1134/S000368382304004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382304004X

Keywords:

Navigation