Skip to main content
Log in

Magnetic properties of carbon structures

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Magnetic properties of the main allotropic modifications of carbon (diamond, graphite, nanographite, nanotubes, and fullerenes) are described. Properties of nanocarbon are considered from the standpoint of the interrelation between structural imperfection and magnetic ordering. Experimental data on high-temperature ferromagnetism in carbon structures and some theoretical models of magnetic carbon are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. Makarova, B. Sundqvist, P. Esquinazi, et al., Nature 413, 718 (2001).

    Article  ADS  Google Scholar 

  2. R. A. Wood, M. H. Lewis, M. R. Lees, et al., J. Phys.: Condens. Matter 14, L385 (2002).

    Article  ADS  Google Scholar 

  3. V. N. Narozhnyi, K.-H. Müller, D. Eckert, et al., Physica B (Amsterdam) 329, 537 (2003).

    ADS  Google Scholar 

  4. K.-H. Han, D. Spemann, R. Höhne, et al., Carbon 41, 785 (2003).

    Google Scholar 

  5. Y. Murakami and H. Suematsu, Pure Appl. Chem. 68, 1463 (1996).

    Google Scholar 

  6. T. L. Makarova, K.-H. Han, P. Esquinazi, et al., Carbon 41, 1575 (2003).

    Article  Google Scholar 

  7. V. E. Antonov, I. O. Bashkin, S. S. Khasanov, et al., J. Alloys Compd. 330, 365 (2002).

    Google Scholar 

  8. J. Gonzalez, F. Guinea, and M. Vozmediano, Phys. Rev. B 63, 134421 (2001).

    Google Scholar 

  9. Y. Kopelevich, P. Esquinazi, J. H. S. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).

    Article  Google Scholar 

  10. Magnetism: Molecules to Materials, Ed. by J. S. Miller and M. Drillon (Weinheim, New York, 2002), Vols. 1–4.

    Google Scholar 

  11. T. L. Makarova, in Studies of High-T c Superconductivity, Ed. by A. Narlikar (Nova Sci., Huntington, 2003), Vol. 45, p. 107.

    Google Scholar 

  12. Theory and Applications of Molecular Diamagnetism, Ed. by L. N. Mulay and E. A. Boudreaux (Wiley, New York, 1976).

    Google Scholar 

  13. R. R. Gupta, in Landolt-Börnstein New Series II, Ed. by K.-H. Hellwege (Springer, Berlin, 1986), Vol. 16, p. 7.

    Google Scholar 

  14. V. Elser and R. C. Haddon, Phys. Rev. A 36, 4579 (1987).

    Article  ADS  Google Scholar 

  15. M. F. Ling, T. R. Finlayson, and G. L. Raston, Aust. J. Phys. 52, 913 (1999).

    ADS  Google Scholar 

  16. J. H. van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Univ. Press, Oxford, 1932).

    Google Scholar 

  17. S. Hudgens, M. Kastner, and H. Fritzsche, Phys. Rev. Lett. 33, 1552 (1974).

    Article  ADS  Google Scholar 

  18. G. Wagoner, Phys. Rev. 118, 647 (1960).

    Article  ADS  Google Scholar 

  19. J. W. McClure, Phys. Rev. 104, 666 (1956).

    Article  ADS  Google Scholar 

  20. P. Esquinazi, A. Setzer, R. Höhne, et al., Phys. Rev. B 66, 024429 (2002).

  21. J. Heremans, D. Olk, and T. Morell, Phys. Rev. B 49, 15122 (1994).

  22. M. S. Sercheli, Y. Kopelevich, R. R. da Silva, et al., Solid State Commun. 121, 579 (2002).

    Article  Google Scholar 

  23. M. S. Sercheli, Y. Kopelevich, R. R. da Silva, et al., Physica B (Amsterdam) 320, 413 (2002).

    ADS  Google Scholar 

  24. H. M. McConnell, J. Chem. Phys. 39, 1910 (1963).

    Google Scholar 

  25. H. M. McConnell, Proc. Robert A. Welch Found. Chem. Res. 11, 144 (1967).

    Google Scholar 

  26. N. Mataga, Theor. Chim. Acta 10, 372 (1968).

    Article  Google Scholar 

  27. A. A. Ovchinnikov and V. N. Spector, Synth. Met. 27, B615 (1988).

    Google Scholar 

  28. A. A. Ovchinnikov and L. I. Shamovsky, J. Mol. Struct.: THEOCHEM 251, 133 (1991).

    Google Scholar 

  29. A. V. Rode, R. G. Elliman, E. G. Gamaly, et al., Appl. Surf. Sci. 197, 644 (2002).

    Google Scholar 

  30. M.-F. Lin and F.-L. Shyu, J. Phys. Soc. Jpn. 69, 3529 (2000).

    Google Scholar 

  31. C. W. Chiu, F. L. Shyu, C. P. Chang, et al., J. Phys. Soc. Jpn. 72, 170 (2003).

    Article  Google Scholar 

  32. K. Wakabayashi and M. Sigrist, Phys. Rev. Lett. 84, 3390 (2000).

    Article  ADS  Google Scholar 

  33. H. Takeda and K. Yoshino, Jpn. J. Appl. Phys., Part 1 41, 6436 (2002).

    Google Scholar 

  34. C. W. Chiu, M. F. Lin, and F. L. Shyu, Physica E (Amsterdam) 11, 356 (2001).

    ADS  Google Scholar 

  35. M. F. Lin, M. Y. Chen, and F. L. Shyu, J. Phys. Soc. Jpn. 70, 2513 (2001).

    Article  Google Scholar 

  36. K. Harigaya, Y. Kobayashi, K. Takai, et al., J. Phys.: Condens. Matter 14, L605 (2002).

    Article  ADS  Google Scholar 

  37. A. S. Kotosonov, Pis’ma Zh. Éksp. Teor. Fiz. 43, 30 (1986) [JETP Lett. 43, 37 (1986)].

    Google Scholar 

  38. K. Kobayashi, Phys. Rev. B 48, 1757 (1993).

    ADS  Google Scholar 

  39. K. Yoshizawa, K. Okahara, T. Sato, et al., Carbon 32, 1517 (1994).

    Article  Google Scholar 

  40. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Google Scholar 

  41. K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Physica B (Amsterdam) 280, 388 (2000).

    ADS  Google Scholar 

  42. O. E. Andersson, B. L. V. Prasad, H. Sato, et al., Phys. Rev. B 58, 16387 (1998).

    Google Scholar 

  43. A. Nakayama, K. Suzuki, T. Enoki, et al., Synth. Met. 57, 3736 (1993).

    Google Scholar 

  44. K. Wakabayashi, M. Fujita, K. Kusakabe, and K. Nakada, Czech. J. Phys. 46, 1865 (1996).

    Google Scholar 

  45. A. S. Kotosonov and S. V. Kuvshinnikov, Phys. Lett. A 230, 377 (1997).

    Article  ADS  Google Scholar 

  46. M. F. Lin and K. W. K. Shung, Phys. Rev. B 52, 8423 (1995).

    ADS  Google Scholar 

  47. S. Bandow, J. Appl. Phys. 80, 1020 (1996).

    Article  ADS  Google Scholar 

  48. S. Bandow, F. Kokai, K. Takahashi, et al., Appl. Phys. A 73, 281 (2001).

    ADS  Google Scholar 

  49. L. Liu, G. Y. Guo, C. S. Jayanthi, and S. Y. Wu, Phys. Rev. Lett. 88, 217206 (2002).

    Google Scholar 

  50. M. Buhl and A. Hirsch, Chem. Rev. 101, 1153 (2001).

    Article  Google Scholar 

  51. E. Osawa, Kagaku (Kyoto) 25, 843 (1970).

    Google Scholar 

  52. V. Elser and R. C. Haddon, Nature 325, 792 (1987).

    Article  ADS  Google Scholar 

  53. A. Pasquarello, M. Schlüter, and R. C. Haddon, Science 257, 1660 (1992).

    ADS  Google Scholar 

  54. R. C. Haddon, Science 261, 1545 (1993).

    ADS  Google Scholar 

  55. R. Zanasi and P. Fowler, Chem. Phys. Lett. 238, 270 (1995).

    Article  Google Scholar 

  56. M. Buhl, Chem. Eur. J. 4, 734 (1998).

    Google Scholar 

  57. R. C. Haddon and A. Pasquarello, Phys. Rev. B 50, 16459 (1994).

    Google Scholar 

  58. M. Saunders, A. Jimenez-Vazquez, R. J. Cross, et al., Am. Chem. Soc. 117, 9305 (1995).

    Article  Google Scholar 

  59. D. Jonsson, P. Norman, K. Ruud, et al., J. Chem. Phys. 109, 572 (1998).

    ADS  Google Scholar 

  60. T. Sternfeld, R. E. Hoffman, C. Thilgen, et al., J. Am. Chem. Soc. 122, 9038 (2000).

    Article  Google Scholar 

  61. R. C. Haddon, L. F. Schneemeyer, J. V. Waszczak, et al., Nature 350, 46 (1991).

    ADS  Google Scholar 

  62. R. S. Ruoff, D. Beach, J. Cuomo, et al., J. Phys. Chem. 95, 3457 (1991).

    Google Scholar 

  63. W. L. Luo, H. Wang, R. S. Ruoff, et al., Phys. Rev. Lett. 73, 186 (1994).

    Article  ADS  Google Scholar 

  64. V. Buntar, H. W. Weber, and M. Ricco, Solid State Commun. 98, 175 (1996).

    Article  Google Scholar 

  65. D. Arčon and K. Prassides, Struct. Bonding (Berlin) 100, 129 (2002).

    Google Scholar 

  66. K. Prassides, S. Margadonna, D. Arcon, et al., J. Am. Chem. Soc. 121, 11227 (1999).

    Google Scholar 

  67. P.-M. Allemand, K. C. Khemani, A. Koch, et al., Science 253, 301 (1991).

    ADS  Google Scholar 

  68. A. Mrzel, A. Omerzu, P. Umek, et al., Chem. Phys. Lett. 298, 329 (1998).

    Article  Google Scholar 

  69. B. Narymbetov, A. Omerzu, V. V. Kabanov, et al., Nature 407, 883 (2000).

    Article  ADS  Google Scholar 

  70. R. Blinc, P. Cevc, D. Arcon, et al., Phys. Rev. B 58, 14416 (1998).

  71. E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

    ADS  MathSciNet  Google Scholar 

  72. A. Mielke and H. Tasaki, Commun. Math. Phys. 158, 341 (1993).

    Article  MathSciNet  Google Scholar 

  73. N. Shima and H. Aoki, Phys. Rev. Lett. 71, 4389 (1993).

    Article  ADS  Google Scholar 

  74. H. Kajii, K. Yoshino, T. Sato, and T. Yamabe, J. Phys. D: Appl. Phys. 33, 3146 (2000).

    Article  ADS  Google Scholar 

  75. H. Takeda, H. Kajii, and K. Yoshino, Jpn. J. Appl. Phys., Part 1 41, 3782 (2002).

    Google Scholar 

  76. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  77. M. Igami, K. Nakada, M. Fujita, and K. Kusakabe, Czech. J. Phys. 46, 2715 (1996).

    Google Scholar 

  78. D. J. Klein and L. Bytautas, J. Phys. Chem. A 103, 5196 (1999).

    Google Scholar 

  79. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 7954 (1996).

    Article  Google Scholar 

  80. K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998).

    Google Scholar 

  81. K. Wakabayashi and K. Harigaya, J. Phys. Soc. Jpn. 72, 998 (2003).

    Google Scholar 

  82. K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).

    Google Scholar 

  83. K. Kusakabe and Y. Takagi, Mol. Cryst. Liq. Cryst. 387, 231 (2002).

    Article  Google Scholar 

  84. K. Harigaya, J. Phys.: Condens. Matter 13, 1295 (2001).

    Article  ADS  Google Scholar 

  85. K. Harigaya, Chem. Phys. Lett. 340, 123 (2001).

    Article  Google Scholar 

  86. Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000).

    Article  ADS  Google Scholar 

  87. T. Enoki, N. Kawatsu, Y. Shibayama, et al., Polyhedron 20, 1311 (2001).

    Article  Google Scholar 

  88. N. Kobayashi, T. Enoki, C. Ishii, et al., J. Chem. Phys. 109, 1983 (1998).

    ADS  Google Scholar 

  89. H. Sato, N. Kawatsu, T. Enoki, et al., Solid State Commun. 125, 641 (2003).

    Article  Google Scholar 

  90. K. Harigaya, Chem. Phys. Lett. 339, 23 (2001).

    Article  Google Scholar 

  91. K. Harigaya and T. Enoki, Mol. Cryst. Liq. Cryst. 386, 205 (2002).

    Article  Google Scholar 

  92. K. Harigaya and T. Enoki, Chem. Phys. Lett. 351, 128 (2002).

    Article  Google Scholar 

  93. P. O. Lehtinen, A. S. Foster, A. Ayuela, et al., Phys. Rev. Lett. 91, 017202 (2003).

    Google Scholar 

  94. A. Oshiyama, S. Okada, and S. Saito, Physica B (Amsterdam) 323, 21 (2002).

    ADS  Google Scholar 

  95. S. Okada and A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001).

    Google Scholar 

  96. S. Okada and A. Oshiyama, J. Phys. Soc. Jpn. 72, 1510 (2003).

    Google Scholar 

  97. T. Hikihara and X. Hu, Physica B (Amsterdam) 329, 1166 (2003).

    ADS  Google Scholar 

  98. Y.-H. Kim, J. Choi, K. J. Chang, and D. Tomanek, Phys. Rev. B 68, 125240 (2003).

    Google Scholar 

  99. H. Takeda and K. Yoshino, J. Phys. D: Appl. Phys. 35, 3225 (2002).

    Article  ADS  Google Scholar 

  100. K. Murata and H. Ushijima, J. Natl. Inst. Mater. Chem. Res. 4, 1 (1996).

    Google Scholar 

  101. K. Murata, H. Ushijima, and H. J. Ueda, J. Chem. Soc. Chem. Commun. 7, 567 (1992).

    Google Scholar 

  102. Yu. V. Korshak, A. A. Ovchinnikov, A. M. Shapiro, et al., Pis’ma Zh. Éksp. Teor. Fiz. 43, 309 (1986) [JETP Lett. 43, 399 (1986)].

    Google Scholar 

  103. Yu. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, and V. N. Spektor, Nature 326, 370 (1987).

    Article  ADS  Google Scholar 

  104. Y. Cao, P. Wang, Z. Hu, et al., Synth. Met. 27, B625 (1988).

    Google Scholar 

  105. Y. Cao, P. Wang, Z. Hu, et al., Solid State Commun. 68, 817 (1988).

    Article  Google Scholar 

  106. H. Tanaka, K. Tokuyama, T. Sato, and T. Ota, Chem. Lett. 10, 1813 (1990).

    Google Scholar 

  107. J. B. Torrance, S. Oostra, and A. Nazzal, Synth. Met. 19, 70 (1987).

    Google Scholar 

  108. M. Ota, M. Otani, and M. Igarashi, Chem. Lett. 7, 1179 (1989).

    Google Scholar 

  109. Y. M. Shulga, A. I. Boldyrev, and A. A. Ovchinnikov, Chem. Phys. Lett. 189, 577 (1992).

    Google Scholar 

  110. K. Kawabata, M. Mizutani, M. Fukuda, and S. Mizogami, Synth. Met. 33, 399 (1989).

    Google Scholar 

  111. K. Tanaka, M. Kobashi, H. Sanekata, et al., J. Appl. Phys. 71, 836 (1992).

    ADS  Google Scholar 

  112. S. Mizogami, M. Mizutani, M. Fukuda, and K. Kawabata, Synth. Met. 43, 3271 (1991).

    Google Scholar 

  113. K. Murata, T. Masuda, and H. Ueda, Chem. Express 5, 597 (1990).

    Google Scholar 

  114. K. Murata, H. Ueda, and K. Kawaguchi, Synth. Met. 44, 357 (1991).

    Google Scholar 

  115. Yu. A. Katulevskii, M. A. Magrupov, and A. A. Muminov, Phys. Status Solidi A 127, 223 (1991).

    Google Scholar 

  116. H. Araki, R. Matsuoka, and K. Yoshino, Solid State Commun. 79, 443 (1991).

    Article  Google Scholar 

  117. H. Araki and K. Yoshino, Jpn. J. Appl. Phys., Part 2 31, L130 (1992).

    Google Scholar 

  118. H. Araki, Y. B. Roh, N. Kuwamura, and K. Yoshino, Jpn. J. Appl. Phys., Part 2 31, L337 (1992).

    Google Scholar 

  119. K. Murata, H. Ushijima, H. Ueda, and K. Kawaguchi, J. Chem. Soc. Chem. Commun. 18, 1265 (1991).

    Google Scholar 

  120. H. Ushijima, K. Murata, H. Ueda, and K. Kawaguchi, Mol. Cryst. Liq. Cryst. 233, 351 (1993).

    Google Scholar 

  121. R. Setnescu, S. Jipa, T. Setnescu, et al., Carbon 37, 1 (1999).

    Article  Google Scholar 

  122. J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, et al., Nature 420, 156 (2002).

    Article  ADS  Google Scholar 

  123. K.-H. Han, D. Spemann, P. Esquinazi, et al., J. Magn. Magn. Mater. 270 (2004, in press).

  124. T. L. Makarova, B. Sundqvist, and Y. Kopelevich, Synth. Met. 137, 1335 (2003).

    Google Scholar 

  125. T. L. Makarova and B. Sundqvist, High Press. Res. 23, 135 (2003).

    Google Scholar 

  126. M. Ata, M. Machida, H. Watanabe, and J. Seto, Jpn. J. Appl. Phys., Part 1 33, 1865 (1994).

    Google Scholar 

  127. A. S. Lobach, Y. M. Shul’ga, O. S. Roshchupkina, et al., Fullerene Sci. Technol. 6, 375 (1998).

    Google Scholar 

  128. J. S. Miller, Adv. Mater. 4, 298 (1992).

    ADS  Google Scholar 

  129. H. Ueda and K. Murata, Nippon Kagaku Kaishi, No. 12855 (1992).

  130. A. Ouchi, K. Saito, and Y. Koga, Chem. Lett., No. 12, 1083 (1995).

  131. R. Höhne and P. Esquinazi, Adv. Mater. 14, 753 (2002).

    Article  Google Scholar 

  132. V. D. Blank, S. G. Buga, G. A. Dubitsky, et al., Carbon 36, 319 (1998).

    Google Scholar 

  133. O. E. Kvyatkovskii, M. G. Shelyapina, B. F. Shchegolev, et al., in Abstracts of IWFAC’2003 (St. Petersburg, Russia, 2003), p. 270.

    Google Scholar 

  134. A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 6, 2004, pp. 641–664.

Original Russian Text Copyright © 2004 by Makarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarova, T.L. Magnetic properties of carbon structures. Semiconductors 38, 615–638 (2004). https://doi.org/10.1134/1.1766362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1766362

Keywords

Navigation