Skip to main content
Log in

Organic solar cells: Structure, materials, critical characteristics, and outlook

  • Reviews
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This review surveys recent advances in the field of photovoltaic devices based on organic photoactive materials and used for converting solar energy into electricity. Different architectures of organic photovoltaic devices are considered: bilayer, bulk heterojunction, and tandem cells. Major groups of organic semiconductors are described together with some numerical data on their performance in solar cells. Possible ways of improving the efficiency of organic solar cells are discussed. The bibliography consists of 80 references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asian Technology Information Program (ATIP): Report ATIP97.030: “The Solar Cell Industry in Japan,” http://www.atip.org/ATIP/public/atip.reports.97/atip97.030r.html

  2. http://www.solarbuzz.com/StatsCosts.htm

  3. S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, “Organic-Based Photovoltaics: Toward Low-Cost Power Generation,” MRS Bull. 30, 10 (2005).

    CAS  Google Scholar 

  4. H. Hoppe and N. S. Sariciftci, “Polymer Solar Cells,” Adv. Polym. Sci. 12, 121 (2007).

    Google Scholar 

  5. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic Solar Cells,” Adv. Funct. Mater. 11, 15–26 (2001).

    Article  CAS  Google Scholar 

  6. H. Hoppe and N. S. Sariciftci, “Organic Solar Cells: An Overview,” J. Mater. Res. 19, 1924–1945 (2004).

    Article  CAS  Google Scholar 

  7. K. M. Coakley and M. D. McGehee, “Conjugated Polymer Photovoltaic Cells,” Chem. Mater. 16, 4533–4542 (2004).

    Article  CAS  Google Scholar 

  8. H. Hoppe and N. S. Sariciftci, “Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells,” J. Mater. Chem. 16, 45–61 (2006).

    Article  CAS  Google Scholar 

  9. R. A. J. Janssen, J. C. Hummelen, and N. S. Sariciftci, “Polymer-Fullerene Bulk Heterojunction Solar Cells,” MRS Bull. 30, 33–36 (2005).

    CAS  Google Scholar 

  10. C. W. Tang, “Two-Layer Organic Photovoltaic Cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).

    Article  CAS  Google Scholar 

  11. P. Peumans and S. R. Forrrest, “Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett. 79, 126–128 (2001).

    Article  CAS  Google Scholar 

  12. J. Drechsel, B. Männig, F. Kozlovski, et al., “High-Efficiency Organic Solar Cells Based on Single or Multiple PIN Structures,” Thin Solid Films 451, 515–517 (2004).

    Article  CAS  Google Scholar 

  13. B. P. Rand, J. Xue, F. Yang, and S. R. Forrest, “Organic Solar Cells with Sensitivity Extending into the Near-Infrared Region,” Appl. Phys. Lett. 87(23), 233 508 (2005).

    Article  CAS  Google Scholar 

  14. K. L. Mutolo, E. I. Mayo, B. P. Rand, et al., “Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).

    Article  CAS  Google Scholar 

  15. H. Gommans, D. Cheyns, T. Aernouts, et al., “Electro-Optical Study of Subphthalocyanine in a Bilayer Organic Solar Cell,” Adv. Funct. Mater. 17, 2653–2658 (2007).

    Article  CAS  Google Scholar 

  16. P. A. Troshin, S. I. Troyanov, G. N. Boiko, et al., “Efficient [2 + 3]-Cycloaddition Approach to Synthesis of Pyridinyl Based [60]-Fullerene Ligands,” Fullerenes, Nanotubes, Carbon Nanostruct. 12, 435–441 (2004).

    Google Scholar 

  17. R. Koeppe, P. A. Troshin, R. N. Lyubovskaya, and N. S. Sariciftci, “Complexation of Pyrrolidinofullerenes and Zinc-Phthalocyanine in a Bilayer Organic Solar Cell Structure,” Appl. Phys. Lett. 87(24), 244 102 (2005).

    Google Scholar 

  18. P. A. Troshin, R. Koeppe, A. S. Peregudov, et al., “Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells,” Chem. Mater. 19, 5363–5372 (2007).

    Article  CAS  Google Scholar 

  19. K. Schulze, C. Uhrich, R. Schüppel, et al., “Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60,” Adv. Mater. (Weinheim, Ger.) 18, 2872–2875 (2006).

    Article  CAS  Google Scholar 

  20. A. Cravino, P. Leriche, O. Alévêque, et al., “Light-Emitting Organic Solar Cells Based on a 3D Conjugated System with Internal Charge Transfer,” Adv. Mater. (Weinheim, Ger.) 18, 3033–3037 (2006).

    Article  CAS  Google Scholar 

  21. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, et al., “Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics,” Science (Washington) 293, 1119–1122 (2001).

    Article  CAS  Google Scholar 

  22. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, et al., “2.5% Efficient Organic Plastic Solar Cells” Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  23. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, et al., “Efficient Methano[70]Fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells,” Angew. Chem., Int. Ed. 42, 3371–3375 (2003).

    Article  CAS  Google Scholar 

  24. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13, 85–88 (2003).

    Article  CAS  Google Scholar 

  25. P. Schilinsky, C. Waldauf, and C. Brabec, “Performance Analysis of Printed Bulk Heterojunction Solar Cells,” Adv. Funct. Mater. 16, 1669–1672 (2006).

    Article  CAS  Google Scholar 

  26. V. Shrotriya, G. Li, Y. Yao, et al., “Accurate Measurement and Characterization of Organic Solar Cells,” Adv. Funct. Mater. 16, 2016–2023 (2006).

    Article  CAS  Google Scholar 

  27. W. Ma, C. Yang, X. Gong, et al., “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  CAS  Google Scholar 

  28. M. Reyes-Reyes, K. Kim, J. Dewald, et al., “Meso-Structure Formation for Enhanced Organic Photovoltaic Cells,” Org. Lett. 7, 5749–5752 (2005).

    Article  CAS  Google Scholar 

  29. H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse Relation between Photocurrent and Absorption Layer Thickness in Polymer Solar Cells,” Phys. Status Solidi RRL 1(1), 40–42 (2007).

    Article  CAS  Google Scholar 

  30. L. H. Slooff, S. C. Veenstra, J. M. Kroon, et al., “Determining the Internal Quantum Efficiency of Highly Efficient Polymer Solar Cells through Optical Modelling,” Appl. Phys. Lett. 90(14), 143 506 (2007).

    Google Scholar 

  31. J. Peet, J. Y. Kim, N. E. Coates, et al., “Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by Processing with Alkane Dithiols,” Nat. Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  32. D. Muhlbacher, M. Scharber, M. Morana, et al., “High Photovoltaic Performance of a Low-Bandgap Polymer,” Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  33. C. Waldauf, P. Schilinsky, J. Hauch, and C. J. Brabec, “Material and Device Concepts for Organic Photovoltaic: Towards Competitive Efficiencies,” Thin Solid Films 451, 503–507 (2004).

    Article  CAS  Google Scholar 

  34. M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of Solvent and Annealing on the Improved Performance of Solar Cells Based on Poly(3-Hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201 120 (2005).

    Google Scholar 

  35. R. C. Hiorns, R. Bettingnies, J. Leroy, et al., “High Molecular Weights, Polydispersities, and Annealing Temperatures in the Optimization of Bulk-Heterojunction Photovoltaic Cells Based on Poly(3-Hexylthiophene) or Poly(3-Butylthiophene),” Adv. Funct. Mater. 16, 2263–2273 (2006).

    Article  CAS  Google Scholar 

  36. V. D. Mihailetchi, H. Xie, B. de Boer, et al., “Origin of the Enhanced Performance in Poly(3-Hexylthiophene): [6,pugo6]-Phenyl C61-Butyric Acid Methyl Ester Solar Cells upon Slow Drying of the Active Layer,” Appl. Phys. Lett. 89(1), 012 107 (2006).

    Google Scholar 

  37. M. Reyes-Reyes, K. Kim, and D. Carrolla, “High-Efficiency Photovoltaic Devices Based on Annealed Poly(3-Hexylthiophene) and 1-(3-Methoxycabonyl)-Propyl-1-Phenyl-(6,6)C61 Blends,” Appl. Phys. Lett. 87(8), 083 506 (2005).

    Google Scholar 

  38. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, et al., “2.5% Efficient Organic Plastic Solar Cells,” Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  39. A. Mozer, P. Denk, M. Scharber, et al., “Novel Regiospecific MDMO-PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells,” J. Phys. Chem. B 108, 5235–5242 (2004).

    Article  CAS  Google Scholar 

  40. M. M. Wienk, J. M. Kroon, W. J. H. Verhees, et al., “Efficient Methano[70]Fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells,” Angew. Chem., Int. Ed. 42, 3371–3375 (2003).

    Article  CAS  Google Scholar 

  41. M. Svensson, F. Zhang, S. C. Veenstra, et al., “High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative,” Adv. Mater. (Weinheim, Ger.) 15, 988–991 (2003).

    Article  CAS  Google Scholar 

  42. F. Zhang, K. G. Jespersen, C. Björström, et al., “Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends,” Adv. Funct. Mater. 16, 667–674 (2006).

    Article  CAS  Google Scholar 

  43. F. Zhang, W. Mammo, L. M. Andersson, et al., “Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells,” Adv. Mater. (Weinheim, Ger.) 18, 2169–2173 (2006).

    Article  CAS  Google Scholar 

  44. H. Hoppe, D. A. M. Egbe, D. Muhlbacher, and N. S. Sariciftci, “Photovoltaic Action of Conjugated Polymer/ Fullerene Bulk Heterojunction Solar Cells Using Novel PPE-PPV Copolymers,” J. Mater. Chem. 14, 3462–3467 (2004).

    Article  CAS  Google Scholar 

  45. R. Demadrille, M. Firon, J. Leroy, et al., “Plastic Solar Cells Based on Fluorenone-Containing Oligomers and Regioregular Alternate Copolymers,” Adv. Funct. Mater. 15, 1547–1552 (2005).

    Article  CAS  Google Scholar 

  46. M. M. Wienk, M. G. R. Turbiez, M. P. Struijk, et al., “Low-Band-Gap Poly(di-2-thienylthienopyrazine): Fullerene Solar Cells,” Appl. Phys. Lett. 88(15), 153 511 (2006).

    Google Scholar 

  47. F. Zhang, E. Perzon, X. Wang, et al., “Polymer Solar Cells Based on a Low-Bandgap Fluorine Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm,” Adv. Funct. Mater. 15, 745–750 (2005).

    Article  CAS  Google Scholar 

  48. L. S. Roman, W. Manno, L. A. A. Pettersson, et al., “High Quantum Efficiency Polythiophene/C60 Photodiodes,” Adv. Mater. (Weinheim, Ger.) 10, 774–777 (1998).

    Article  CAS  Google Scholar 

  49. C. J. Brabec, C. Winder, N. S. Sariciftci, et al., “A Low-Bandgap Semiconducting Polymer for Photovoltaic Devices and Infrared Emitting Diodes,” Adv. Funct. Mater. 12, 709–712 (2002).

    Article  CAS  Google Scholar 

  50. C. Winder, G. Matt, J. C. Nummelen, et al., “Sensitization of Low-Bandgap Polymer Bulk Heterojunction Solar Cells,” Thin Solid Films 373, 403–404 (2002).

    Google Scholar 

  51. S. K. Lee, N. S. Cho, J. H. Kwak, et al., New Low-Band-Gap Alternating Polyfluorene Derivatives for Photovoltaic Cells,” Thin Solid Films 511–512, 157–162 (2006).

    Article  CAS  Google Scholar 

  52. F. Guo, Y. Gi. Kim, J. R. Reynolds, and K. S. Schanze, “Platinum-Acetylide Polymer Based Solar Cells: Involvement of the Triplet State for Energy Conversion,” Chem. Commun. (Cambridge, UK), No. 17, 1887–1889 (2006).

  53. X. Wang, E. Perzon, F. Oswald, et al., “Enhanced Photocurrent Spectral Response in Low-Bandgap Polyfluorene and C70-Derivative-Based Solar Cells,” Adv. Funct. Mater. 15, 1665–1670 (2005).

    Article  CAS  Google Scholar 

  54. X. Wang, E. Perzon, and J. L. Delgado, et al., “Infrared Photocurrent Spectral Response from Plastic Solar Cell with Low-Band-Gap Polyfluorene and Fullerene Derivative,” Appl. Phys. Lett. 85, 5081–5083 (2004).

    Article  CAS  Google Scholar 

  55. L. M. Campos, A. Tontcheva, S. Günes, et al., “Extended Photocurrent Spectrum of a Low-Band-Gap Polymer in a Bulk Heterojunction Solar Cell,” Chem. Mater. 17 4031–4033 (2005).

    Article  CAS  Google Scholar 

  56. L. M. Campos, A. J. Mozer, S. Günes, et al., “Photovoltaic Activity of a PolyProDOT Derivative in a Bulk Heterojunction Solar Cell,” Sol. Energy Mater. Sol. Cells 90, 3531–3546 (2006).

    Article  CAS  Google Scholar 

  57. M. Drees, H. Hoppe, C. Winder, et al., “Stabilization of the Nanomorphology of Polymer-Fullerene “Bulk Heterojunction” Blends Using a Novel Polymerizable Fullerene Derivative,” J. Mater. Chem. 15, 5158–5163 (2005).

    Article  CAS  Google Scholar 

  58. L. M. Popescu, P. van’ t Hof, A. B. Sieval, et al., “Thienyl Analog of 1-(3-Methoxycarbonyl)propyl-1-Phenyl-[6,pugo6]-Methanofullerene for Bulk Heterojunction Photovoltaic Devices in Combination with Polythiophenes,” Appl. Phys. Lett. 89(21), 213 507 (2006).

    Google Scholar 

  59. L. Zheng, Q. Zhou, X. Deng, et al., “The Effect of Side Chains on the Performance of Solar Cells Fabricated from Poly[2-Methoxy-5-(2′-Ethylhexoxy)-1,4-Phenylene Vinylene] and C60 Dicarboxylate,” 489, 251–256 (2005).

    CAS  Google Scholar 

  60. N. Camaioni, L. Garlaschelli, A. Geri, et al., “Solar Cells Based on Poly(3-Alkyl)thiophenes and [60]Fullerene: A Comparative Study,” J. Mater. Chem. 12, 2065–2070 (2002).

    Article  CAS  Google Scholar 

  61. I. Riedel, E. von Hauff, J. Parisi, et al., “Diphenylmethanofullerenes: New and Efficient Acceptors in Bulk-Heterojunction Solar Cells,” Adv. Funct. Mater. 15, 1979–1987 (2005).

    Article  CAS  Google Scholar 

  62. C. M. Atienza, G. Fernandez, L. Sanchez, et al., “Light Harvesting Tetrafullerene Nanoarray for Organic Solar Cells,” Chem. Commun. (Cambridge, UK), No. 5, 514–516 (2006).

  63. X. Wang, E. Perzon, F. Oswald, et al., “Enhanced Photocurrent Spectral Response in Low-Gandgap Polyfluorene and C70-Derivative-Based Solar Cells,” Adv. Funct. Mater. 15, 1665–1670 (2005).

    Article  CAS  Google Scholar 

  64. M. A. Loi, P. Denk, H. Hoppe, et al., “Long-Lived Photoinduced Charge Separation for Solar Cell Applications in Phthalocyanine-Fulleropyrrolidine Dyad Thin Films,” J. Mater. Chem. 13, 700–704 (2003).

    Article  CAS  Google Scholar 

  65. F. Meng, J. Hua, K. Chem, et al., “Counterion Effects in Cyanine Heterojunction Photovoltaic Devices,” J. Mater. Chem. 15, 979–986 (2005).

    Article  CAS  Google Scholar 

  66. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science (Washington) 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  67. B. Sun and N. C. Greenham, “Improved Efficiency of Photovoltaics Based on CdSe Nanorods and Poly(3-Hexylthiophene) Nanofibers,” 8, 3557–3560 (2006).

    CAS  Google Scholar 

  68. C. J. Brabec, A. Cravino, D. Meissner, et al., “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Adv. Funct. Mater. 11, 374–380 (2001).

    Article  CAS  Google Scholar 

  69. F. B. Kooistra, J. Knol, F. Kastenberg, et al., “Increasing the Open Circuit Voltage of Bulk-Heterojunction Solar Cells by Raising the LUMO Level of the Acceptor,” Org. Lett. 9, 551–554 (2007).

    Article  CAS  Google Scholar 

  70. M. C. Scharber, D. Muhlbacher, M. Koppe, et al., “Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency,” Adv. Mater. (Weinheim, Ger.) 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  71. L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells,” Appl. Phys. Lett. 88(9), 093 511 (2006).

    Google Scholar 

  72. M. A. Green, K. Emery, D. King, et al., “Solar Cell Efficiency Tables,” Prog. Photovoltaics 14, 455–461 (2006).

    Article  Google Scholar 

  73. T. B. Singh and N. S. Sariciftci, “Progress in Plastic Electronic Devices,” Annu. Rev. Mater. Res. 36, 199–230 (2006).

    Article  CAS  Google Scholar 

  74. D. Gebeyehu, C. J. Brabec, F. Padinger, et al., “The Interplay of Efficiency and Morphology in Photovoltaic Devices Based on Interpenetrating Networks of Conjugated Polymers with Fullerenes,” Synth. Met. 118, 1–9 (2001).

    Article  CAS  Google Scholar 

  75. K. Kawano, N. Ito, T. Nishimori, and J. Sakai, “Open Circuit Voltage of Stacked Bulk Heterojunction Organic Solar Cells,” Appl. Phys. Lett. 88(7), 073 514 (2006).

    Google Scholar 

  76. J. Drechsel, B. Männig, F. Kozlowski, et al., “Efficient Organic Solar Cells Based on a Double p-i-n Architecture Using Doped Wide-Gap Transport Layers,” Appl. Phys. Lett. 86(24), 244 102 (2005).

    Google Scholar 

  77. G. Dennler, H. J. Prall, R. Koeppe, et al., “Enhanced Spectral Coverage in Tandem Organic Solar Cells,” Appl. Phys. Lett. 89(7), 073 502 (2006).

    Google Scholar 

  78. A. Hadipour, B. Boer, J. Wildeman, et al., “Solution-Processed Organic Tandem Solar Cells,” Adv. Funct. Mater. 16, 1897–1903 (2006).

    Article  CAS  Google Scholar 

  79. J. Y. Kim, K. Lee, N. E. Coates, et al., “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science (Washington) 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  80. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric Tandem Organic Photovoltaic Cells with Hybrid Planar-Mixed Molecular Heterojunctions,” Appl. Phys. Lett 85, 5757–5759 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Troshin.

Additional information

Original Russian Text © P.A. Troshin, R.N. Lyubovskaya, V.F. Razumov, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troshin, P.A., Lyubovskaya, R.N. & Razumov, V.F. Organic solar cells: Structure, materials, critical characteristics, and outlook. Nanotechnol Russia 3, 242–271 (2008). https://doi.org/10.1134/S1995078008050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008050029

Keywords

Navigation