Skip to main content
Log in

MBE growth of ultrathin III–V nanowires on a highly mismatched SiC/Si(111) substrate

  • XXI International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility in principle of growing III–V GaAs, AlGaAs, and InAs nanowires (NWs) on a silicon substrate with a nanometer buffer layer of silicon carbide is demonstrated for the first time. The diameter of these NWs is smaller than that of similar NWs grown on a silicon substrate. In particular, the minimum diameter is less than 10 nm for InAs NWs. In addition, it was assumed on the basis of photoluminescence measurements that, when AlGaAs NWs are grown on these substrates, a complex structure is formed due to the self-organized formation of AlGaAs quantum dots with a lower content of aluminum, embedded in the NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguch, J. Appl. Phys. 77, 447 (1995).

    Article  ADS  Google Scholar 

  2. K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 74, 3162 (1993).

    Article  ADS  Google Scholar 

  3. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater. 16, 1890 (2004).

    Article  Google Scholar 

  4. A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Appl. Phys. Lett. 84, 4176 (2004).

    Article  ADS  Google Scholar 

  5. G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Yu. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, Nanoscale Res. Lett. 2, 360 (2010).

    Article  ADS  Google Scholar 

  6. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).

    Article  ADS  Google Scholar 

  7. Y. Cui and C. M. Lieber, Science 291, 851 (2001).

    Article  ADS  Google Scholar 

  8. S. Gradecak, F. Quin, Y. Li, H.-G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005).

    Article  ADS  Google Scholar 

  9. E. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004).

    Article  ADS  Google Scholar 

  10. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature 434, 1085 (2005).

    Article  ADS  Google Scholar 

  11. Y. Huang and C. M. Lieber, Pure Appl. Chem. 76, 2051 (2004).

    Article  Google Scholar 

  12. D. Whang, S. Jin, and C. M. Lieber, Jpn. J. Appl. Phys. 43, 4465 (2004).

    Article  ADS  Google Scholar 

  13. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43, 1539 (2009).

    Article  ADS  Google Scholar 

  14. G. E. Cirlin, V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Yu. B. Samsonenko, A. D. Bouravleuv, J. C. Harmand, and F. Glas, Phys. Status Solidi RRL 4, 112 (2009).

    Article  Google Scholar 

  15. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, and C. Chang-Hasnain, Appl. Phys. Lett. 90, 043115 (2007).

    Article  ADS  Google Scholar 

  16. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50, 1238 (2008).

    Article  ADS  Google Scholar 

  17. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    Article  ADS  Google Scholar 

  18. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43, 1539 (2009).

    Article  ADS  Google Scholar 

  20. G. E. Cirlin, I. V. Shtrom, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, A. D. Bouravleuv, and I. P. Soshnikov, Semiconductors 50, 1421 (2016).

    Article  ADS  Google Scholar 

  21. V. G. Dubrovskii, I. V. Shtrom, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, S. Rouvimov, N. Akopian, T. Kasama, and G. E. Cirlin, Cryst. Growth Des. 16, 7251 (2016).

    Article  Google Scholar 

  22. L. Pavesi and M. Guui, J. Appl. Phys. 10, 4779 (1994).

    Article  ADS  Google Scholar 

  23. M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, Nat. Mater. 5, 439 (2013).

    Article  ADS  Google Scholar 

  24. D. Rudolph, S. Funk, M. Döblinger, S. Morkötter, S. Hertenberger, L. Schweickert, J. Becker, S. Matich, M. Bichler, D. Spirkoska, I. Zardo, J. J. Finley, G. Abstreiter, and G. Koblmüller, Nano Lett. 13, 1522 (2013).

    Article  ADS  Google Scholar 

  25. N. Jeon, B. Loitsch, S. Morkoetter, G. Abstreiter, J. Finley, H. J. Krenner, G. Koblmueller, and L. J. Lauhon, ACS Nano 8, 8335 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Reznik.

Additional information

Original Russian Text © R.R. Reznik, K.P. Kotlyar, I.V. Shtrom, I.P. Soshnikov, S.A. Kukushkin, A.V. Osipov, G.E. Cirlin, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 11, pp. 1525–1529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, R.R., Kotlyar, K.P., Shtrom, I.V. et al. MBE growth of ultrathin III–V nanowires on a highly mismatched SiC/Si(111) substrate. Semiconductors 51, 1472–1476 (2017). https://doi.org/10.1134/S1063782617110252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617110252

Navigation