Skip to main content
Log in

Laminated grid solar cells (LGCells) on multicrystalline silicon. Application of atomic hydrogen treatment

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

For the first time, solar cells of laminated grid cell (LGCell) design are fabricated on multicrystalline nontextured silicon (mc-Si). An efficiency of 15.9% is achieved. The effect of (n + pp +)-mc-Si structure treatment by atomic hydrogen generated by a hot filament and microwave plasma is studied. Hydrogenation improves the parameters describing the dependence of the open-circuit voltage on the radiation intensity and the long-wavelength (λ = 1000 nm) sensitivity of the solar cell by 10–20%, which indicates that defects in mc-Si are passivated. Hydrogenation of the emitter side results in an increase in the series resistance of the solar cell, a decrease in the short-wavelength (λ = 400 nm) sensitivity by 30–35%, and the appearance of an oxygen peak in the energy-dispersive spectra (EDS). These effects are eliminated by fine etching of the emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Untila, T. N. Kost, A. B. Chebotareva, M. B. Zaks, A. M. Sitnikov, and O. I. Solodukha, Fiz. Tekh. Poluprovodn. 39, 1393 (2005) [Semiconductors 39, 1346 (2005)].

    Google Scholar 

  2. G. P. Willeke, in Proceedings of the 19th Europ. Photovoltaic Solar Energy Conference (Paris, 2004), p. 1.

  3. G. Untila, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, and O. Solodukha, in Proceedings of the 23rd Europ. Photovoltaic Solar Energy Conference (Valencia, 2008), p. 704.

  4. A. Das, D. S. Kim, V. Meemongkolkiat, and A. Rohatgi, in Proceedings of the 33rd Photovoltaic Spec. Conference (San Diego, 2008), 978-1-4244-1641-7.

  5. G. Untila, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, and O. Solodukha, in Proceedings of the 21st Europ. Photovoltaic Solar Energy Conference (Dresden, 2006), p. 1258.

  6. G. Untila, A. Osipov, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, O. Solodukha, and A. Pinov, in Proceedings of the 17th Europ. Photovoltaic Solar Energy Conference (Munich, 2001), p. 1793.

  7. G. Untila, A. Osipov, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, and O. Solodukha, in Proceedings of the 17th Europ. Photovoltaic Solar Energy Conference (2001), p. 1796.

  8. G. Untila, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, and O. Solodukha, in Proceedings of the 24th Europ. Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 1698.

  9. H. Kobayashi, Y.-L. Liu, Y. Yamashita, J. Ivanco, S. Imai, and M. Takahashi, Solar Energy 80, 645 (2006).

    Article  Google Scholar 

  10. S. J. Pearton, J. W. Corbett, and T. S. Shi, Appl. Phys. A 43, 153 (1987)

    Article  ADS  Google Scholar 

  11. M. J. Keevers, A. Turner, U. Schubert, P. A. Basore, and M. A. Green, in Proceedings of the 20th Europ. Photovoltaic Solar Energy Conference (Barcelona, 2005), p. 1305.

  12. S. Lindekugel, H. Lautenschlager, T. Ruof, and S. Reber, in Proceedings of the 23rd Europ. Photovoltaic Solar Energy Conference (Valencia, 2008), p. 2232.

  13. B. Gorka, B. Rau, K. Y. Lee, P. Dogan, F. Fenske, E. Conrad, S. Gall, and B. Rech, in Proceedings of the 22nd Europ. Photovoltaic Solar Energy Conference (Milan, 2007), p. 2024.

  14. G. Hahn and A. Schonecker, J. Phys.: Condens. Matter 16, R1615 (2004).

    Article  ADS  Google Scholar 

  15. K. A. Munzer, in Proceedings of the 24th Europ. Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 1558.

  16. R. A. Sinton and A. Cuevas, in Proceedings of the 16th Europ. Photovoltaic Solar Energy Conference (Glasgow, 2000), p. 1152.

  17. G. G. Untila, T. N. Kost, and A. B. Chebotareva, Thin Solid Films 518, 1345 (2009).

    Article  ADS  Google Scholar 

  18. A. Chebotareva, G. Untila, T. Kost, S. Jorgensen, and A. G. Ulyashin, Thin Solid Films 515, 8505 (2007).

    Article  ADS  Google Scholar 

  19. A. L. Farenbruch and R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic, New York, 1983; Energoatomizdat, Moscow, 1987)).

    Google Scholar 

  20. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  21. S. Darwiche, M. Nikravech, D. Morvan, J. Amouroux, and D. Ballutaud, Sol. Energy Mater. Solar Cells 91, 195 (2007).

    Article  Google Scholar 

  22. F. Dross, R. H. Franken, S. Singh, E. van Kerschaver, G. Beaucame, and R. Mertens, in Proceedings of the 33rd Photovoltaic Spec. Conference (San Diego, 2008), p. 108.

  23. S. Devenport, S. Roberts, K. C. Heasman, A. Cole, D. Tregurtha, and T. M. Bruton, in Proceedings of the 33rd Photovoltaic Spec. Conference (San Diego, 2008), p. 107.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Untila.

Additional information

Original Russian Text © G.G. Untila, T.N. Kost, A.B. Chebotareva, M.E. Belousov, V.A. Samorodov, A.Yu. Poroykov, M.A. Timofeyev, M.B. Zaks, A.M. Sitnikov, O.I. Solodukha, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 3, pp. 379–386.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Untila, G.G., Kost, T.N., Chebotareva, A.B. et al. Laminated grid solar cells (LGCells) on multicrystalline silicon. Application of atomic hydrogen treatment. Semiconductors 45, 369–375 (2011). https://doi.org/10.1134/S1063782611030213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611030213

Keywords

Navigation