Skip to main content
Log in

Effect of Dispersity of a Sulfonated Cation-Exchanger on the Current–Voltage Characteristics of Heterogeneous Membranes Ralex CM Pes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The influence of the electrical and geometrical heterogeneity of the surface of heterogeneous sulfonated cation-exchange membranes on their current–voltage characteristic (CVC) has been experimentally studied. The objects of the study have been experimental samples of Ralex CM Pes membranes manufactured by MEGA a.s. (Czech Republic). A series of experimental membranes Ralex has been produced by hot rolling using an ion-exchanger with different particle sizes. The particle size of the ion-exchanger was controlled by its milling time from 5 to 80 min. It has been found that in the swollen state of the membranes, the ratio of conducting (ion-exchanger particles) and inert (polyethylene) areas on the membrane surface remains constant regardless of the milling time of the sulfonated cation-exchanger. At the same time, the dimensions of the conductive areas and the distance between them decreased and the surface microrelief became smoother. The influence of changes in the membrane surface properties on the CVC parameters has been revealed. With an increase in the ion-exchanger milling time corresponding to a decrease in the spacing of electrical heterogeneity of the surface, a reduction in the length of limiting-current plateau and a decrease in the resistance of the second and third regions on the current–voltage curve were observed. It has been assumed that the main cause of changes in the current–voltage characteristics is an increase in the intensity of heteroelectroconvection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. I. Zabolotskii, L. Novak, A. V. Kovalenko, et al., Pet. Chem. 57, 779 (2017).

    Article  Google Scholar 

  2. V. I. Zabolotskii, V. V. Nikonenko, M. Kh. Urtenov, et al., Russ. J. Electrochem. 48, 692 (2012).

    Article  CAS  Google Scholar 

  3. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 53, 1122 (2017).

    Article  CAS  Google Scholar 

  4. V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, et al., Adv. Colloid Interface Sci. 160, 101 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. N. D. Pis’menskaya, V. V. Nikonenko, N. A. Mel’nik, et al., Russ. J. Electrochem. 48, 610 (2012).

    Article  CAS  Google Scholar 

  6. V. I. Vasil’eva, E. M. Akberova, and V. I. Zabolotskii, Russ. J. Electrochem. 53, 398 (2017).

    Article  Google Scholar 

  7. V. I. Vasil’eva, A. V. Zhil’tsova, E. M. Akberova, and A. I. Fataeva, Kondens. Sredy Mezhfaz. Granitsy 16, 257 (2014).

    Google Scholar 

  8. E. V. Knyaginicheva, E. D. Belashova, V. V. Sarapulova, and N. D. Pis’menskaya, Kondens. Sredy Mezhfaz. Granitsy 16, 282 (2014).

    Google Scholar 

  9. V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, et al., Desalination 342, 85 (2014).

    Article  CAS  Google Scholar 

  10. N. P. Berezina, Electrochemistry of Membrane Systems (Kubanskii Gos. Univ., Krasnodar, 2009) [in Russian].

    Google Scholar 

  11. I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2238 (2000).

    CAS  Google Scholar 

  12. I. Rubinstein, B. Zaltzman, I. Prets, and K. Linder, Russ. J. Electrochem. 38, 864 (2002).

    Article  Google Scholar 

  13. R. Ibanez, D. F. Stamatialis, and M. Wessling, J. Membr. Sci. 239, 119 (2004).

    Article  CAS  Google Scholar 

  14. V. I. Vasil’eva, A. V. Zhil’tsova, M. D. Malykhin, et al., Russ. J. Electrochem. 50, 120 (2014).

    Article  CAS  Google Scholar 

  15. J.-H. Choi, H.-J. Lee, and S.-H. Moon, J. Colloid Interface Sci. 238, 188 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Y.-J. Choi, M. -S. Kang, S.-H. Kim, et al., J. Membr. Sci. 223, 201 (2003).

    Article  CAS  Google Scholar 

  17. E.-Y. Choi, H. Strathmann, J.-M. Park, and S.‑H. Moon, J. Membr. Sci. 268, 165 (2006).

    Article  CAS  Google Scholar 

  18. V. V. Gil, M. A. Andreeva, N. D. Pismenskaya, et al., Pet. Chem. 56, 440 (2016).

    Article  CAS  Google Scholar 

  19. N. A. Mishchuk and S. S. Dukhin, Khim. Tekhnol. Vody 13, 963 (1991).

    CAS  Google Scholar 

  20. A. V. Zhil’tsova, V. I. Vasil’eva, M. D. Malykhin, et al., Vestn. VGU, Ser: Khim. Biol. Farm, No. 2, 35 (2013).

    Google Scholar 

  21. V. I. Zabolotskii, V. V. Bugakov, M. V. Sharafan, and R. Kh. Chermit, Russ. J. Electrochem. 48, 650 (2012).

    Article  CAS  Google Scholar 

  22. J. H. Choi, S. H. Kim, and S. H. Moon, J. Colloid Interface Sci. 241, 120 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. E. Volodina, N. Pismenskaya, V. Nikonenko, et al., J. Colloid Interface Sci. 285, 247 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. I. Rubinstein, B. Zaltzman, and O. Kedem, J. Membr. Sci. 125, 17 (1997).

    Article  CAS  Google Scholar 

  25. A. V. Kovalenko, V. I. Zabolotskii, V. V. Nikonenko, and M. Kh. Urtenov, Politemat. Set. Elektron. Nauchn. Zh. Kubansk. Gos. Agr. Univ., No. 104 (2014).

  26. M. K. Urtenov, A. M. Uzdenova, A. V. Kovalenko, et al., J. Membr. Sci. 447, 190 (2013).

    Article  CAS  Google Scholar 

  27. K. A. Nebavskaya, D. Yu. Butylskii, I. A. Moroz, et al., Pet. Chem. 58, 780 (2018).

    Article  CAS  Google Scholar 

  28. E. Korzhova, N. Pismenskaya, D. Lopatin, et al., J. Membr. Sci. 500, 161 (2016).

    Article  CAS  Google Scholar 

  29. S. M. Davidson, M. Wessling, and A. Mani, Sci. Rep. 6, 22505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Ibanez, D. F. Stamatialis, and M. Wessling, J. Membr. Sci. 239, 119 (2004).

    Article  CAS  Google Scholar 

  31. J. Balster, M. H. Yildirim, D. F. Stamatialis, et al., J. Phys. Chem. B 111, 2152 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. S. A. Loza, V. I. Zabolotsky, N. V. Loza, and M. A. Fomenko, Pet. Chem. 56, 1038 (2016).

    Article  CAS  Google Scholar 

  33. E. M. Akberova, V. I. Vasil’eva, and M. D. Malykhin, Condens. Matter Interph 17, 273 (2015).

  34. E. M. Akberova, Condens. Matter Interph 19, 314 (2017).

  35. I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 041507 (2002).

    Google Scholar 

  36. S. S. Dukhin and N. A. Mishchuk, J. Membr. Sci. 79, 199 (1993).

    Article  CAS  Google Scholar 

  37. N. A. Mishchuk, Curr. Opin. Colloid Interface Sci. 18, 137 (2013).

    Article  CAS  Google Scholar 

  38. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012).

    Article  CAS  Google Scholar 

  39. N. D. Pismenskaya, V. V. Nikonenko, N. A. Mel’nik, et al., Pet. Chem. 51, 610 (2011).

    Article  CAS  Google Scholar 

  40. www.mega.cz. Accessed March 12, 2018.

  41. N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov, Physicochemical Properties of ion-exchange Membranes (Kubanskii Gos. Univ., Krasnodar, 1999) [in Russian].

    Google Scholar 

  42. V. I. Vasil’eva, E. M. Akberova, M. D. Malykhin, and E. A. Goleva, RU Patent No. 162966 (2016).

  43. F. Maletzki, H.-W. Rosler, and E. J. Staude, J. Membr. Sci. 71, 105 (1992).

    Article  CAS  Google Scholar 

  44. N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).

    Article  CAS  Google Scholar 

  45. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, New York, 2004).

    Google Scholar 

  46. V. I. Vasil’eva, E. M. Akberova, A. V. Zhiltsova, et al., J. Surf. Investig. X-ray Synchrotron Neutron Tech., No. 7, 833 (2013).

    Article  CAS  Google Scholar 

  47. V. I. Vasil’eva, N. D. Pismenskaya, E. M. Akberova, and K. A. Nebavskaya, Russ. J. Phys. Chem. A 88, 1293 (2014).

    Article  CAS  Google Scholar 

  48. E. A. Sirota, N. A. Kranina, V. I. Vasil’eva, et al., Vestn. VGU, Ser: Khim. Biol. Farm., No. 2, 53 (2011).

  49. N. L. Glinka, General Chemistry (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  50. V. I. Vasil’eva, N. A. Kranina, M. D. Malykhin, et al., J. Surf. Investig. X-ray Synchrotron Neutron Tech., No. 7, 144 (2013).

    Article  CAS  Google Scholar 

  51. V. I. Vasil’eva, O. V. Grigorchuk, and V. A. Shaposhnik, Desalination 192, 401 (2006).

    Article  CAS  Google Scholar 

  52. I. Rubinstein and B. Zaltzman, Math. Models Methods Appl. Sci. 11, 263 (2001).

    Article  CAS  Google Scholar 

  53. A. M. Uzdenova, A. V. Kovalenko, and M. Kh. Urtenov, Politem. Set. Elektron. Nauchn. Zh. Kubansk. Gos. Agra. Unive., No. 72 (2011).

Download references

ACKNOWLEDGMENTS

This work was supported by the President of the Russian Federation, grant no. MK-925.2018.3.

The photomicrographs and AFM images of the membrane surface were obtained on the equipment of the Collective Use Center of Voronezh State University. URL: http://ckp.vsu.ru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasil’eva.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, V.I., Akberova, E.M., Zabolotsky, V.I. et al. Effect of Dispersity of a Sulfonated Cation-Exchanger on the Current–Voltage Characteristics of Heterogeneous Membranes Ralex CM Pes. Pet. Chem. 58, 1133–1143 (2018). https://doi.org/10.1134/S0965544118130091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118130091

Keywords:

Navigation