Skip to main content
Log in

Combined Methods of Analysis of Metal-Containing Raw Material (Review)

  • Analysis of Substances
  • Published:
Inorganic Materials Aims and scope

Abstract

Methods of analysis of reusable metal-containing material (RMR) are considered in the review: X-ray fluorescence, atomic absorption spectrophotometry, and atomic emission and mass spectrometry with inductively coupled plasma. Peculiarities of the applied methods are shown, and a method of analysis with consideration of the specificity of RMR should be developed for every object. In the most cases, the methods of sample processing harmonized with the applied method of analysis and sample content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karpov, Yu.A., Savostin, A.P., and Sal’nikov, V.D., Analiticheskii kontrol’ v metallurgicheskom proizvodstve: uchebnoe posobie (Analytical Control in Metallurgical Industry: Manual), Moscow: Akademkniga, 2006.

    Google Scholar 

  2. Losev, N.F. and Smagunova, A.N., Osnovy rentgenospektral’nogo fluorestsentnogo analiza (Principles of X-Ray Fluorescence Analysis), Moscow: Khimiya, 1982.

    Google Scholar 

  3. Aisueva, T.S., Analysis of Pd, Pt, Re in catalysts by xray fluorescence, VII Vserossiiskoi konferentsiya po rentgenospektral’nomu analizu, Tezisy dokladov (VII All-Russ. Conf. on X-Ray Fluorescence Analysis, Abstracts of Papers), Novosibirsk, 2011, p.82.

    Google Scholar 

  4. Shabanova, L.N., Obrazovskii, E.G., Akulova, G.I., and Sryvtseva, T.B., Sampling and determination of precious metals in industrial products and wastes, VII Konferentsiya “Analitika Sibiri i Dal’nego Vostoka–2004,” Tezisy dokladov (VII Conf. “Analytics of Siberia and the Far East–2004,” Abstracts of Papers), Novosibirsk, 2004, p.96.

    Google Scholar 

  5. Shestakov, V.A., Arkhipov, N.A., Makarov, D.F., and Kukushkin, Yu.N., The X-ray analysis of the slurry and platinum concentrates for precious metals, Zh. Analit. Khim., 1974, vol. 29, no. 12, pp. 2176–2180.

    CAS  Google Scholar 

  6. Antonova, Yu.V. and Karpov, Yu.A., The use of x-ray fluorescence analysis for the certification of secondary raw materials containing precious metals, VII Vserossiiskoi konferentsiya po rentgenospektral’nomu analizu, Tezisy dokladov (VII All-Russ. Conf. on X-Ray Fluorescence Analysis, Abstracts of Papers), Novosibirsk, 2011, p.83.

    Google Scholar 

  7. Metodika rentgenospektral’nogo opredeleniya zolota i serebra vo vtorichnom syr’e dragotsennykh (blagorodnykh) metallov (Methods of X-Ray Analysis of Gold and Silver in the Secondary Raw Materials of Precious (Noble) Metals), Moscow: Giredmet, 2005.

  8. Obrazovskii, E.G., Akulova, G.I., and Sryvtseva, T.B., An integrated approach to the analysis of catalysts containing precious metals and their products, VII Konferentsiya “Analitika Sibiri i Dal’nego Vostoka–2004,” Tezisy dokladov (VII Conf. “Analytics of Siberia and the Far East–2004,” Abstracts of Papers), Novosibirsk, 2004, p.97.

    Google Scholar 

  9. Shestakov, V.A., Malofeeva, G.I., Petrukhin, O.M., et al., Sorption-XRF analysis of heavy metals using polymer thioester, Zh. Anal. Khim., 1983, vol. 38, no. 12, pp. 2131–2136.

    CAS  Google Scholar 

  10. Oskolok, K.V. and Monogarova, O.V., Optimal analytical abilities of hybrid sorption-XRF methods for analysis of heavy metals in the water, VII Vseross. konferentsiya po rentgenospektral’nomu analizu, Tezisy dokladov (VII All-Russian Conf. on X-Ray Analysis, Abstracts of Papers), Novosibirsk, 2011, p.171.

    Google Scholar 

  11. Ganeev, A.A., Atomno-absorbtsionnyi analiz: uchebnoe posobie (Atomic Absorption Analysis: Manual), Moscow: Lan’, 2011.

    Google Scholar 

  12. Pupyshev, A.A., Atomno-absorbtsionnyi spektral’nyi analiz (Atomic Absorption Spectral Analysis), Moscow: Tekhnosfera, 2009.

    Google Scholar 

  13. Britske, M.E., Atomno-absorbtsionnyi spektrokhimicheskii analiz (Atomic Absorption Spectrochemical Analysis), Moscow: Khimiya, 1982.

    Google Scholar 

  14. Nikolaev, G.N. and Nemets, A.M., Atomno-absorbtsionnaya spektroskopiya v issledovanii ispareniya metallov (Atomic Absorption Spectroscopy in the Study of Metal Evaporation), Moscow: Metallurgiya, 1982.

    Google Scholar 

  15. Zolotov, Yu.A., Osnovy analiticheskoi khimii. Prakticheskoe rukovodstvo (Fundamentals of Analytical Chemistry: A Practical Guide), Moscow: Vysshaya Shkola, 1999.

    Google Scholar 

  16. Analiticheskaya khimiya metallov platinovoi gruppy (Analytical Chemistry of Platinum Group Metals), Zolotov, Yu.A., Varshal, G.M., and Ivanov, V.M., Eds., Moscow: KomKniga, 2005, 2nd ed.

  17. Dal’nova, O.A., Atomic absorption spectroscopy of secondary and technogenic raw materials for platinum metals, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Moscow, 2009.

    Google Scholar 

  18. Dal’nova, O.A., Shiryaeva, O.A., Karpov, Yu.A., Alekseeva, T.Yu., Shiryaev, A.A., Kulikauskas, V.S., and Filatova, D.G., Direct atomic-absorption determination of platinum, palladium, and rhodium in dead ceramic-based autocatalysts, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1599–1604.

    Google Scholar 

  19. Metodika atomno-absorbtsionnogo opredeleniya serebra, zolota, palladiya i platiny vo vtorichnom syr’e dragotsennykh (blagorodnykh) metallov (Atomic Absorption Analysis of Ag, Au, Pd, and Pt in the Secondary Raw Materials of Precious (Noble) Metals), Moscow: Giredmet, 2005, no. 1-05.

  20. Puig, A.I. and Alvarado, J.I., Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 2006, vol. 61, pp. 1050–1053.

    Article  Google Scholar 

  21. Dal’nova, O.A., Shiryaeva, O.A., Karpov, Yu.A., Alekseeva, T.Yu., Shiryaev, A.A., and Filatova, D.G., Sorption-atomic-absorption determination of platinum, palladium, and rhodium in dead autocatalysts, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1613–1617.

    Google Scholar 

  22. Metodika sorbtsionno-atomno-absorbtsionnogo opredeleniya palladiya, platiny, rodiya, iridiya i zolota vo vtorichnom syr’e dragotsennykh (blagorodnykh) metallov (Sorption Atomic Absorption Analysis of Pd, Pt, Rh, Ir and Au in the Secondary Raw Materials of Precious (Noble) Metals), Moscow: Giredmet, 2005.

  23. Kulikova L.D., Shiryaeva O.A, and Karpov, Yu.A. Atomic absorption analysis of platinum, palladium, and rhodium in automotive catalysts, Latv. Kim. Zh., 2003, no. 2, pp. 154–158.

    Google Scholar 

  24. Stafilov, T., Determination of trace elements in minerals by electrothermal atomic absorption spectrometry, Spectrochim. Acta, Part B, 2000, vol. 55, no. 7, pp. 893–906.

    Article  Google Scholar 

  25. Aktuganova, K.V., Sources of errors in the electrothermal atomic absorption analysis of platinum metals in the secondary and technogenic materials, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Moscow: Moscow State Inst. Steel Alloys, 2006.

    Google Scholar 

  26. Dal’nova, O.A., Dmitrieva, A.V., Ivannikova, N.V., Shiryaeva, O.A., and Karpov, Yu.A., Determination of toxic elements (Hg, As, Se) by atomic absorption spectrometry with electrothermal atomization, S”ezd analitikov Rossii i Shkola molodykh uchenykh “Analiticheskaya khimiya—novye metody i vozmozhnosti,” Tezisy dokladov (Congr. of Analysts of Russia and School of Young Scientists “Analytical Chemistry: New Methods and Opportunities,” Abstracts of Papers), Moscow, 2010, p.94.

    Google Scholar 

  27. Nazarenko, I.I., Kislova, I.V., Kashina, L.I., et al., Atomic absorption analysis of mercury in the waters after sorption concentration on polymer thioester, Zh. Anal. Khim., 1986, vol. 29, no. 8, pp. 1385–1389.

    Google Scholar 

  28. Castillo, J.R., Lopez-Molinero, A., and Sucunza, T., Determination of As, Sb, and Bi in high-purity copper by electrothermal atomic absorption spectrometry, Microchim. Acta, 1986, vol. 35, no. 4, pp. 330–332.

    Google Scholar 

  29. Savel’eva, A.N. and Agapova, T.E., Determination of arsenic in the copper sulfate electrolyte and electrolytic copper by electrothermal atomic absorption spectrometry, Zavod. Lab., 1990, vol. 56, no. 4, pp. 40–42.

    Google Scholar 

  30. Mullen, J.D., Determination of arsenic in high-purity copper by flameless atomic-absorption spectrophotometry, Talanta, 1977, vol. 24, no. 10, pp. 657–658.

    Article  CAS  Google Scholar 

  31. Malyutina, T.M., Alekseeva, T.Yu., D’yachkova, A.V., Kudryavtseva, G.S., Berliner, L.D., and Karpov, Yu.A., Determination of platinum and palladium in dead catalysts using inductively coupled plasma atomic emission spectrometry after sample digestion by high-temperature fusion, Inorg. Mater., 2010, vol. 46, no. 14, pp. 1479–1482.

    Article  CAS  Google Scholar 

  32. Dyachkova, A.V., Malutina, T.M., Alekseeva, T.Yu., and Karpov, Yu.A., Chemical preparation of samples of dead automobile catalyzers for subsequent determination of platinum, palladium, and rhodium using atomic emission spectrometry with inductively coupled plasma, Inorg. Mater., 2012, vol. 48, no. 14, pp. 1272–1278.

    CAS  Google Scholar 

  33. Baranovskaya, V.B., Mar’ina, G.E., Orlov, V.V., and Karpov, Yu.A., Features of the analytical control of spent automotive catalysts containing precious metals, Mater. III mezhdunarodnoi nauchno-prakticheskoi konferentsii “Materialy v avtomobilestroenii (Proc. III Int. Sci.-Pract. Conf. “The Materials in the Automotive Industry”), Tolyatti, 2008, part 1, p.39.

    Google Scholar 

  34. Metodika atomno-emissionnogo s induktivno svyazannoi plazmoi opredeleniya platiny v otrabotannykh platinosoderzhashchikh katalizatorakh i produktakh ikh pererabotki (Inductively Coupled Plasma Atomic Emission Spectrometry of Platinum in the Platinum-Containing Catalyst Wastes and By-Products), Moscow: Giredmet, 2011.

  35. OST (State Standard) 153-39.2-032-2003: Spent Monometallic and Polymetallic Al–Pt Catalysts and Catalyst Production Wastes, Moscow: Minist. Energetiki Ross. Fed., 2003.

  36. TU 64-5-103–89. Katalizator palladievyi otrabotannyi (Palladium Catalyst Waste), Moscow: Minist. Med. Prom. SSSR, 1989.

  37. Otrabotannye avtomobil’nye katalizatory. Opredelenie platiny, palladiya i rodiya atomno-emissionnym metodom s induktivno svyazannoi plazmoi s ispol’zovaniem analiticheskikh avtoklavov (Exhausted Automotive Catalysts. Determination of Pd, Pt and Rh by Inductively Coupled Plasma Atomic Emission Spectrometry Using of Autoclaves), Moscow: Giredmet, 2010.

  38. Metodika atomno-emissionnogo s induktivno svyazannoi plazmoi opredeleniya zolota, palladiya, platiny i rodiya vo vtorichnom syr’e dragotsennykh (blagorodnykh) metallov (Inductively Coupled Plasma Atomic Emission Spectrometry of Au, Pd, Pt, and Rh in the Secondary Raw Materials of Precious (Noble) Metals), Moscow: Giredmet, 2011.

  39. Metodika atomno-emissionnogo s induktivno svyazannoi plazmoi opredeleniya serebra vo vtorichnom syr’e dragotsennykh (blagorodnykh) metallov (Inductively Coupled Plasma Atomic Emission Spectrometry of Ag in the Secondary Raw Materials of Precious (Noble) Metals), Moscow: Giredmet, 2011.

  40. Dal’nova, O.A., Zhernokleeva, K.V., Petrov, A.M., Baranovskaya, V.B., and Karpov, Yu.A., Sorptionatom-emission determination of platinum, palladium, rhodium, iridium and ruthenium in secondary and man-made raw materials, Mater. II mezhdunarodnogo simpoziuma po sorbtsii i ekstraktsii ISSE-2009 (Proc. II Int. Symp. on Sorption and Extraction ISSE-2009), Vladivostok, 2009, p.142.

    Google Scholar 

  41. Kubrakova, I.V., Myasoedova, G.V., Shumskaya, T.V., Kudinova, T.F., Zakharchenko, E.A., and Mokhodoeva, O.B., Determination of trace noble metals in natural samples using hyphenated methods, J. Anal. Chem., 2005, vol. 60, no. 5, pp. 475–479.

    Article  CAS  Google Scholar 

  42. Metodika atomno-emissionnogo s induktivno svyazannoi plazmoi opredeleniya palladiya, platiny i rodiya v shlamakh proizvodstva azotnoi kisloty (Inductively Coupled Plasma Atomic Emission Spectrometry of Pd, Pt and Rh in the Production of Nitric Acid Sludge), Moscow: Giredmet, 2006, no. 11-06.

  43. Filichkina, V.A., Alekseeva, T.Yu., Chemleva, T.A., Karpov, Yu.A., and Miskar’yants, V.G., Elaboration of the technique of atomic emission detection with inductively coupled plasma of platinum metals in chamotte waste with autoclave sample preparation and design of the experiments, Inorg. Mater., 2012, vol. 48, no. 14, pp. 1261–1265.

    Article  CAS  Google Scholar 

  44. Metodika atomno-emissionnogo s induktivno-svyazannoi plazmoi opredeleniya palladiya v otrabotannykh palladiisoderzhashchikh katalizatorakh i produktakh ikh pererabotki (Inductively Coupled Plasma Atomic Emission Spectrometry of Palladium in the Palladium-Containing Catalyst Waste and By-Products), Moscow: Giredmet, 2011.

  45. Golubova, E.A. and Loseva, M.P., Use of a plasma atomic emission spectrometer SPECTRO CIROS for the analysis of materials containing platinum metals, Anal. Kontrol, 2003, vol. 7, no. 2, pp. 182–183.

    Google Scholar 

  46. Doidge, P.S., Determination of Trace Impurities in High-Purity Copper by Sequential ICP-OES with Axial Viewing, Santa Clara, CA: Agilent Technol., 2010.

    Google Scholar 

  47. Pohl, P. and Zyrnicki, W., Study of chemical and spectral interferences in the simultaneous determination of As, Bi, Sb, Se and Sn by hydride generation inductively coupled plasma atomic emission spectrometry, Anal. Chim. Acta, 2002, vol. 468, pp. 71–79.

    CAS  Google Scholar 

  48. Savkina, V.N., Dolganyuk, I.M., Peikhvasser, N.N., et al., Use of atomic-emission analysis with inductively coupled plasma to control the impurity elements in the products of OEMK metallurgical production, Anal. Kontrol, 2004, vol. 8, no. 1, pp. 51–55.

    Google Scholar 

  49. Glinskaya, I.V., Gorbunov, V.B., Podgorodetskiy, G.S., and Teselkina, A.E., Monitoring the processing of red mud, Steel Transl., 2013, vol. 43, no. 9, pp. 552–556.

    Article  Google Scholar 

  50. Khil’ko, A.A., Simonyan, L.M., Glinskaya, I.V., and Teselkina, A.E., Determining the composition of electrosmelting dust, Steel Transl., 2014, vol. 44, no. 1, pp. 1–5.

    Article  Google Scholar 

  51. Chan, G.C.-Y. and Hieftje, G.M., Investigation of plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry caused by matrices with low second ionization potentials identification of the secondary factor, Spectrochim. Acta, Part B, 2006, vol. 61, pp. 642–659.

    Article  Google Scholar 

  52. Price, W.J., Analytical Atomic Absorption Spectrometry, London: Heyden, 1972.

    Google Scholar 

  53. Thomas, R., Practical Guide to ICP-MS (Practical Spectroscopy), New York: Marcel Dekker, 2004.

    Google Scholar 

  54. Rusanov, A.K., Osnovy kolichestvennogo spektral’nogo analiza rud i mineralov (Fundamentals of Quantitative Spectral Analysis of Ores and Minerals), Moscow: Nedra, 1978.

    Google Scholar 

  55. Duan, T., Kang, J., Chen, H., and Zeng, X., Determination of ultra-trace concentrations of elements in high purity tellurium by inductively coupled plasma mass spectrometry after Fe(OH)3 coprecipitation, Spectrochim. Acta, Part B, 2003, vol. 58, p. 1679.

    Article  Google Scholar 

  56. Baranovskaya, V.B., Shiryaeva, O.A., Filatova, D.G., Dal’nova, O.A., and Karandashev, V.K., Analysis of possible use of sorbents for the determination of platinum metals by inductively coupled plasma-mass spectrometry, Mater. XVIII Mendeleevskogo s”ezda po obshchei i prikladnoi khimii (Proc. XVIII Mendeleev Congr. on the General and Applied Chemistry), Moscow, 2007, p. 19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Doronina.

Additional information

Original Russian Text © M.S. Doronina, Yu.A. Karpov, V.B. Baranovskaya, 2016, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2016, Vol. 82, No. 4, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronina, M.S., Karpov, Y.A. & Baranovskaya, V.B. Combined Methods of Analysis of Metal-Containing Raw Material (Review). Inorg Mater 53, 1411–1417 (2017). https://doi.org/10.1134/S0020168517140047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517140047

Keywords

Navigation