Skip to main content
Log in

A review of instrumental methods for determination of rare earth elements

  • Analysis of Substances
  • Published:
Inorganic Materials Aims and scope

Abstract

Modern instrumental methods for determination of rare earth elements most successfully used in analytical practice are considered. The analytical characteristics and the figures of merit of various analysis techniques are compared, among which atomic emission spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), and neutron activation analysis (NAA) occupy a special place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zawisza, B., Pytlakowska, K., Feist, B, et al., Determination of rare earth elements by spectroscopic techniques: a review, J. Anal. At. Spectrom., 2011, vol. 26, pp. 2373–2390.

    Article  CAS  Google Scholar 

  2. Rao, T.P. and Biju, V.M, Trace determination of lanthanides in metallurgical, environmental, and geological samples, CRAC Crit. Rev. Anal. Chem., 2000, vol. 30, nos. 2–3, pp. 179–220.

    Article  CAS  Google Scholar 

  3. Djingova, R., Mihaylova, V., Lyubomirova, V., and Tsalev, D.L, Multielement analytical spectroscopy in plant ionomics research, Appl. Spectrosc. Rev., 2013, vol. 48, pp. 384–424.

    Article  CAS  Google Scholar 

  4. Rao, T.P. and Kala, R, On-line and off-line preconcentration of trace and ultratrace amounts of lanthanides, Talanta, 2004, vol. 63, pp. 949–959.

    Article  CAS  Google Scholar 

  5. De Godoi, M., Pereira, M. and Arruda, M.A.Z., Trends in preconcentration procedures for metal determination using atomic spectrometry techniques, Microchim. Acta, 2003, vol. 141, pp. 115–131.

    Article  Google Scholar 

  6. Janos, P, Analytical separations of lanthanides and actinides by capillary electrophoresis, Electrophoresis, 2003, vol. 24, pp. 1982–1992.

    Article  CAS  Google Scholar 

  7. Bol’shov, M.A., Karandashev, V.K., Tsizin, G.I., and Zolotov, Yu.A., Flow methods for the determination of elements in solutions based on sorption preconcentration and inductively couple plasma mass spectrometry, J. Anal. Chem., 2011, vol. 66, no. 6, pp. 548–564.

    Article  CAS  Google Scholar 

  8. Maheswari, M.A. and Subramanian, M.S, New multidentate ion-selective grafted polymer for preconcentration of lanthanides and actinides, Anal. Lett., 2005, vol. 38, pp. 1331–1349.

    Article  CAS  Google Scholar 

  9. Rao, T.P., Metilda, P., and Gladis, J.M, Overview of analytical methodologies for sea water analysis: Part I. Metals, CRAC Crit. Rev. Anal. Chem., 2005, vol. 35, pp. 247–288.

    Article  CAS  Google Scholar 

  10. Willie, S.N. and Sturgeon, R.E, Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry, Spectrochim. Acta, 2001, vol. 56, no. 9, pp. 1707–1716.

    Article  Google Scholar 

  11. Hang, Y.P., Qin, Y.C., and Shen, J, Separation and microcolumn preconcentration of traces of rare earth elements on nanoscale TiO2 and their determination in geological samples by ICP-AES, J. Sep. Sci., 2003, vol. 26, nos. 9–10, pp. 957–960.

    Article  CAS  Google Scholar 

  12. Premadas, A, Cation exchange chromatographic group separation and ICP-AES determination of rare earth elements and yttrium in refractory minerals zircon, ilmenite, rutile, columbite-tantalite, garnet, and silliminite, At. Spectrosc., 2003, vol. 24, no. 4, pp. 149–158.

    CAS  Google Scholar 

  13. Minowa, H. and Ebihara, M, Separation of rare earth elements from scandium by extraction chromatography. Application to radiochemical neutron activation analysis for trace rare earth elements in geological samples, Anal. Chim. Acta, 2003, vol. 498, no. 1, pp. 25–37.

    Article  CAS  Google Scholar 

  14. Karandashev, V.K., Tyutyunnik, O.A., and Kubrakova, I.V, Rare earth element determination in geological samples by the mass spectrometry and the inductively coupled plasma atomic emission spectrometry, Mass-Spektrom., 2011, vol. 8, no. 4, pp. 242–258.

    CAS  Google Scholar 

  15. Beauchemin, D, Inductively coupled plasma mass spectrometry, Anal. Chem., 2008, vol. 80, no. 12, pp. 4455–4486.

    Article  CAS  Google Scholar 

  16. Beauchemin, D, Environmental analysis by inductively coupled plasma mass spectrometry, Mass Spectrom. Rev., 2010, vol. 29, pp. 560–592.

    CAS  Google Scholar 

  17. Aramendia, M., Resano, M., and Vanhaecke, F, Electrothermal vaporization-inductively coupled plasmamass spectrometry: A versatile tool for tackling challenging samples. A critical review, Anal. Chim. Acta, 2009, vol. 648, pp. 23–44.

    Article  CAS  Google Scholar 

  18. Robinson, P., Townsend, A.T., Yu, Z., and Munker, C, Determination of scandium, yttrium and rare earth elements in rocks by high resolution inductively coupled plasma-mass spectrometry, Geostand. Geoanal. Res., 1999, vol. 23, no. 1, pp. 31–46.

    Article  CAS  Google Scholar 

  19. Dick, D., Wegner, A., Gabrielli, P, et al., Rare earth elements determined in Antarctic ice by inductively coupled plasma–Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study, Anal. Chim. Acta, 2008, vol. 621, no. 2, pp. 140–147.

    Article  CAS  Google Scholar 

  20. Roy, P., Balaram, V., Kumar, A, et al., New REE and trace element data on two kimberlitic reference materials by ICP-MS, Geostand. Geoanal. Res., 2007, vol. 31, no. 3, pp. 261–273.

    Article  CAS  Google Scholar 

  21. Strnad, L., Mihaljevic, M., and Sebek, O, Laser ablation and solution ICP-MS determination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glass reference materials, Geostand. Geoanal. Res., 2005, vol. 29, no. 3, pp. 303–314.

    Article  CAS  Google Scholar 

  22. Kent, A.J.R., Jacobsen, B., Peate, D.W, et al., Isotope dilution MC-ICP-MS rare earth element analysis of geochemical reference materials NIS T SRM 6 10, NIST SRM 6 12, NIS T SRM 6 14, BHVO-2G, BHVO-2, BCR-2G, JB-2, WS-E, W-2, AGV-1 and AGV-2, Geostand. Geoanal. Res., 2004, vol. 28, no. 3, pp. 417–429.

    Article  CAS  Google Scholar 

  23. Astrom, M. and Corin, N, Distribution of rare earth elements in anionic, cationic and particulate fractions in boreal humus-rich streams affected by acid sulphate soils, Water Res., 2003, vol. 37, no. 2, pp. 273–280.

    Article  CAS  Google Scholar 

  24. Zhang, X.C., Nearing, M.A., Polyakov, V.O., and Friedrich, J.M, Using rare-earth oxide tracers for studying soil erosion dynamics, Soil Sci. Soc. Am. J., 2003, vol. 67, no. 1, pp. 279–288.

    Article  CAS  Google Scholar 

  25. Polyakov, V.O. and Nearing, M.A, Rare earth element oxides for tracing sediment movement, Catena, 2004, vol. 55, no. 3, pp. 255–276.

    Article  CAS  Google Scholar 

  26. Rodriguez, P., Marchante-Gayon, J.M., and SanzMedel, A, Elemental analysis of silicon based minerals by ultrasonic slurry sampling electrothermal vaporisation ICP-MS, Talanta, 2006, vol. 68, no. 3, pp. 869–875.

    Article  CAS  Google Scholar 

  27. Xiang, G.Q., Jiang, Z.C., He, M., and Hu, B, Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta, Part B, 2005, vol. 60, nos. 9–10, pp. 1342–1348.

    Article  CAS  Google Scholar 

  28. Zhang, Y., Jiang, Z., and Hu, B, Determination of refractory elements in atmospheric particulates using slurry sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry with polyvinylidene fluoride as chemical modifier, Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 14, pp. 2091–2098.

    Article  CAS  Google Scholar 

  29. Wu, S., He, M., Hu, B., and Jiang, Z, Determination of trace rare earth elements in natural water by electrothermal vaporization ICP-MS with pivaloyltrifluoroacetone as chemical modifier, Microchim. Acta, 2007, vol. 159, nos. 3–4, pp. 269–275.

    Article  CAS  Google Scholar 

  30. Li, S., Hu, B., Jiang, Z., and Chen, R, Direct determination of trace refractory elements in human serum by ETV-ICP-MS with in-situ matrix removal, Anal. Bioanal. Chem., 2004, vol. 379, nos. 7–8, pp. 1076–1082.

    CAS  Google Scholar 

  31. Shibata, N., Fudagawa, N., and Kubota, M, Oxide formation in electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta, 1993, vol. 48, no. 9, pp. 1127–1137.

    Article  Google Scholar 

  32. Goltz, D.M., Gregoire, D.C., and Chakrabarti, C.L, Mechanism of vaporization of yttrium and rare earth elements in electrothermal vaporization inductively coupled plasma mass spectrometry, Spectrochim. Acta, 1995, vol. 50, no. 11, pp. 1365–1382.

    Article  Google Scholar 

  33. Zhang, Y.F., Jiang, Z.C., He, M., and Hu, B, Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling, Environ. Pollut., 2007, vol. 148, no. 2, pp. 459–467.

    Article  CAS  Google Scholar 

  34. Jochum, K.P., Stoll, B., Herwig, K., and Willbold, M.J, Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration, J. Anal. At. Spectrom., 2007, vol. 22, no. 2, pp. 112–121.

    Article  CAS  Google Scholar 

  35. Hu, Z.C., Gao, S., Liu, Y.S, et al., Accurate determination of rare earth elements in USGS, NIST SRM, and MPI-DING glasses by excimer LA-ICP-MS at high spatial resolution, Spectrosc. Lett., 2008, vol. 41, no. 5, pp. 228–236.

    Article  CAS  Google Scholar 

  36. Tanaka, K., Takahashi, Y., and Shimizu, H, Determination of rare earth element in carbonate using laserablation inductively-coupled plasma mass spectrometry: An examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis, Anal. Chim. Acta, 2007, vol. 583, no. 2, pp. 303–309.

    Article  CAS  Google Scholar 

  37. Smirnova, E.V., Balbekina, N.G., Sandimirova, G.P, et al., On selection of analytical rare earth element ions for the inductively coupled plasma mass spectrometry, Anal. Kontrol, 2004, vol. 8, no. 4, pp. 329–338.

    Google Scholar 

  38. Kent, A.J.R. and Ungerer, C.A, Production of barium and light rare earth element oxides during LA-ICPMS microanalysis, J. Anal. At. Spectrom., 2005, vol. 20, no. 11, pp. 1256–1262.

    Article  CAS  Google Scholar 

  39. Karandashev, V.K., Zhernokleeva, K.V., and Karpov, Yu.A., Use of double-charged ions to determine some rare earth elements in neodymium, samarium, europium, and their compounds by the inductively coupled plasma mass spectrometry, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 12, pp. 5–10.

    CAS  Google Scholar 

  40. Gabrielli, P., Barbante, C., Turetta, C, et al., Direct determination of rare earth elements at the subpicogram per gram level in Antarctic ice by ICP-SFMS using a desolvation system, Anal. Chem., 2006, vol. 78, no. 6, pp. 1883–1889.

    Article  CAS  Google Scholar 

  41. Rodushkin, I., Nordlund, P., Engstrom, E., and Baxter, D.C, Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma, J. Anal. At. Spectrom., 2005, vol. 20, no. 11, pp. 1250–1255.

    Article  CAS  Google Scholar 

  42. Nakamura, K. and Chang, Q, Precise determination of ultra-low (sub-ng g–1) level rare earth elements in ultramafic rocks by quadrupole ICP-MS, Geostand. Geoanal. Res., 2007, vol. 31, no. 3, pp. 185–197.

    Article  CAS  Google Scholar 

  43. Zhang, X., Liu, J.L., Yia, Y, et al., Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation, Int. J. Mass Spectrom., 2007, vol. 260, no. 1, pp. 57–66.

    Article  CAS  Google Scholar 

  44. Choi, K.S., Lee, C.H., Kim, J.G, et al., Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP-AES analysis, Talanta, 2007, vol. 71, no. 2, pp. 662–667.

    Article  CAS  Google Scholar 

  45. Kulkarni, P., Chellam, S., and Mittlefehldt, D.W, Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry, Anal. Chim. Acta, 2007, vol. 581, no. 2, pp. 247–259.

    Article  CAS  Google Scholar 

  46. Zhang, X.Q., Yi, Y., Liu, Y.L, et al., Direct determination of rare earth impurities in high purity erbium oxide dissolved in nitric acid by inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2006, vol. 555, no. 1, pp. 57–62.

    Article  CAS  Google Scholar 

  47. Yin, J., Hu, B., He, M., and Jiang, Z.C, Micro-sampling, high sensitivity ETV-ICP-MS method for the determination of trace rare earth impurities in high purity lanthanum oxide, At. Spectrosc., 2005, vol. 26, no. 5, pp. 197–202.

    CAS  Google Scholar 

  48. Chen, S., Lu, D., Hu, Z., and Wu, B, In-situ vaporization and matrix removal for the determination of rare earth impurities in zirconium dioxide by electrothermal vaporization inductively coupled plasma atomic emission spectrometry, Spectrochim. Acta, 2005, vol. 60, no. 4, pp. 537–541.

    Article  CAS  Google Scholar 

  49. Shaw, T.J., Duncan, T., and Schnetger, B.A, Preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by Isotope Dilution ICPMS, Anal. Chem., 2003, vol. 75, no. 14, pp. 3396–3403.

    Article  CAS  Google Scholar 

  50. Zhang, Y., Deng, L.B., and Ye, W.H, Does the longterm application of calcium superphosphate lead to an increase of the soil rare earth element contents?, J. Environ. Sci. (China), 2006, vol. 18, no. 1, pp. 130–134.

    CAS  Google Scholar 

  51. Donati, G.L., Gu, J., Nobrega, J.A, et al., Simultaneous determination of the lanthanides by tungsten coil atomic emission spectrometry, J. Anal. At. Spectrom., 2008, vol. 23, no. 3, pp. 361–366.

    Article  CAS  Google Scholar 

  52. Zhang, N., Huang, C., and Hu, B, ICP-AES determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn, Anal. Sci., 2007, vol. 23, no. 8, pp. 997–1002.

    Article  CAS  Google Scholar 

  53. Gasquez, J.A., DeLima, E., Olsina, R.A, et al., A fast method for apatite selective leaching from granitic rocks followed through rare earth elements and phosphorus determination by inductively coupled plasma optical emission spectrometry, Talanta, 2005, vol. 67, no. 4, pp. 824–828.

    Article  CAS  Google Scholar 

  54. Witkowska, E., Szczepaniak, K., and Biziuk, M, Some applications of neutron activation analysis: A review, J. Radioanal. Nucl. Chem., 2005, vol. 265, no. 1, pp. 141–150.

    Article  CAS  Google Scholar 

  55. Waheed, S., Rahman, A., Siddique, N., and Ahmad, S, Rare earth and other trace element content of NRCC HISS-1 sandy marine sediment reference material, Geostand. Geoanal. Res., 2007, vol. 31, no. 2, pp. 133–141.

    Article  CAS  Google Scholar 

  56. Maind, S.D., Kumar, S.A., Chattopadhyay, N, et al., Analysis of Indian blue ballpoint pen inks tagged with rare-earth thenoyltrifluoroacetonates by inductively coupled plasma-mass spectrometry and instrumental neutron activation analysis, Forensic Sci. Int., 2006, vol. 159, no. 1, pp. 32–42.

    Article  CAS  Google Scholar 

  57. Yang, T. and Qin, W, Fluorimetric determination of traces of europium (III) using a new chelator and acetate or phosphate in dimethylsulfoxide as enhancers, Microchim. Acta, 2006, vol. 157, no. 1–2, pp. 55–61.

    Google Scholar 

  58. Chen J., Liu Y., and Gao Y., Determination of trace gadolinium by catalytic kinetic fluorimetry, Rare Metals 2006. (in press). doi: 10.1007/s12598-013-0085-2

    Google Scholar 

  59. Karpinska, J, Derivative spectrophotometry–recent applications and directions of developments, Talanta, 2004, vol. 64, pp. 801–822.

    Article  CAS  Google Scholar 

  60. Gadzhieva, S.R., Guseinov, F.E., Akhundova, M.T, et al., Photometric determination of lutetium (III) with S 2,3,4-trihydroxy-3'-nitro-4'-sulfoazobenzene in the presence of Triton X-114, Zavod. Lab., Diagn. Mater., 2010, vol. 76, no. 2, pp. 23–25.

    CAS  Google Scholar 

  61. Gaiduk, O.V., Pantaler, R.P., and Blank, A.B, Spectrophotometric determination of cerium in the presence of Ca, Sr, and Al, Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 3, pp. 15–18.

    CAS  Google Scholar 

  62. Gaiduk, O.V., Pantaler, R.P., and Blank, A.B, Spectrophotometric determination of microgram-scale contents of Ce (IV) by tropaeolin 00, Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 5, pp. 12–14.

    CAS  Google Scholar 

  63. Gudzenko, L.V., Pantaler, R.P., and Blank, A.B, Quantitative assessment of activating neodymium addition content in scintillation by the spectrophotometry, Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 3, pp. 12–14.

    CAS  Google Scholar 

  64. Kurbatova, L.D. and Kurbatov, D.I, Spectrophotometric determination of scandium by chlorcyanogenformazan, Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 9, pp. 18–20.

    CAS  Google Scholar 

  65. Gadzhieva, S.R., Guseinov, F.E., and Chyragov, F.M, Photometric determination of the rare earth elements by 2,2',3,4-tetrahydroxy-3'-sulfo-5'-nitroazobenzene, Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 5, pp. 19–21.

    CAS  Google Scholar 

  66. Nakayama, K. and Nakamura, T, X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads, Anal. Sci., 2005, vol. 21, no. 7, pp. 815–822.

    Article  CAS  Google Scholar 

  67. Sitko, R., Zawisza, B., and Czaja, M, Fundamental parameters method for determination of rare earth elements in apatites by wavelength-dispersive X-ray fluorescence spectrometry, J. Anal. At. Spectrom., 2005, vol. 20, no. 8, pp. 741–745.

    Article  CAS  Google Scholar 

  68. Panteeva, S.V, Specific features of determination of some rare earth element contents in rock samples with different composition by the inductively coupled plasma mass spectrometry and X-ray fluorescence analysis, Anal. Kontrol, 2009, vol. 13, no. 4, pp. 184–192.

    Google Scholar 

  69. Tsvetyanskii, A.L. and Eritenko, A.N, Determination of high yttrium contents in rare earth concentrates by the X-ray fluorescence analysis, Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 6, p. 25–27.

    CAS  Google Scholar 

  70. Suvorova, L.F., Konev, A.A., Koneva, A.A, et al., Techniques for quantitative determination of raremetal—rare-earth minerals by the electron microprobe X-ray spectrum analysis, Anal. Kontrol, 2006, vol. 10, no. 2, pp. 131–136.

    Google Scholar 

  71. Biju, V.M. and Rao, T.P, FAAS determination of selected rare earth elements coupled with multielement solid phase extractive preconcentration, Chem. Anal., 2005, vol. 50, no. 5, pp. 935–944.

    CAS  Google Scholar 

  72. Sheina, T.V., Belikov, K.N., Bryleva, E.Yu., and Grebenyuk, N.N, Determination of the basic components in Li-, B-, Sr-, La-, and Gd-base oxide compound monocrystals by the atomic emission spectrometry, Zavod. Lab., Diagn. Mater., 2011, vol. 77, no. 11, pp. 11–16.

    CAS  Google Scholar 

  73. Dubenskaya, L.O., Levitskaya, G.D., and Poperechnaya, N.P, Use of organic reagents to the voltammetric determination of rare earth elements, J. Anal. Chem., 2005, vol. 60, no. 4, pp. 304–309.

    Article  CAS  Google Scholar 

  74. Mittal, S.K., Kumar, S.K.A., and Sharma, H.K., PVC-based dicyclohexano-18-crown-6 sensor for La (III) ions, Talanta, 2004, vol. 62, no. 4 pp. 801–805.

    Article  CAS  Google Scholar 

  75. Gaspar, M., Knaack, C., Meinert, L.D., and Moretti, R, REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 185–205.

    Article  CAS  Google Scholar 

  76. Jakubowski, N., Prohaska, T., Vanhaecke, F, et al., Inductively coupled plasmaand glow discharge plasma-sector field mass spectrometry. Part II. Applications, J. Anal. At. Spectrom., 2011, vol. 26, pp. 727–757.

    Article  CAS  Google Scholar 

  77. Chen, S.H., Peng, T.Y., Jiang, Z.C, et al., Direct determination of rare earth impurities in lanthanum oxide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with slurry sampling, J. Anal. At. Spectrom., 1999, vol. 14, no. 11, pp. 1723–1726.

    Article  CAS  Google Scholar 

  78. Yin, J., Hu, B., and Jiang, Z.C, Chelation-assisted electrothermal vaporization for the ICP-MS determination of trace rare earth impurities in high purity Pr6O11 and Er2O3, At. Spectrosc., 2006, vol. 27, no. 6, pp. 207–213.

    CAS  Google Scholar 

  79. Stipp, S.L.S., Christensen, J.T., Lakshtanov, L.Z, et al., Rare earth element (REE) incorporation in natural calcite: Upper limits for actinide uptake in a secondary phase, Radiochim. Acta, 2006, vol. 94, no. 9–11, pp. 523–528.

    CAS  Google Scholar 

  80. Rege, S., Jackson, S., Griffin, W.L, et al., Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2005, vol. 20, no. 7, pp. 601–611.

    Article  CAS  Google Scholar 

  81. Wu, S., Hu, C., He, M, et al., Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair, Talanta, 2013, vol. 115, pp. 342–348.

    Article  CAS  Google Scholar 

  82. Petrelli, M., Perugini, D., Poli, G., and Peccerillo, A, Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS, Microchim. Acta, 2007, vol. 158, nos. 3–4, pp. 275–282.

    Article  CAS  Google Scholar 

  83. Kuhn, H.-R. and Gunther, D, A quantification strategy in laser ablation ICP-MS based on the transported aerosol particle volume determined by optical particle size measurement, J. Anal. At. Spectrom., 2006, vol. 21, no. 11, pp. 1209–1213.

    Article  CAS  Google Scholar 

  84. Rezaee, Kh., Saion, E.B., Wood, A.K., and Abdi, M.R, Rare earth elements determination and distribution patterns in surface marine sediments of the South China Sea by INAA, Malaysia, J. Radioanal. Nucl. Chem., 2010, vol. 283, no. 3, pp. 823–829.

    Article  CAS  Google Scholar 

  85. Ribeiro, A.P., Figueiredo, A.M.G., and Sigolo, J.B, Determination of heavy metals and other trace elements in lake sediments from a sewage treatment plant by neutron activation analysis, J. Radioanal. Nucl. Chem., 2005, vol. 263, no. 3, pp. 645–651.

    Article  CAS  Google Scholar 

  86. Dampare, S.B., Asiedu, D.K., and Osae, S, Determination of rare earth elements by neutron activation analysis in altered ultramafic rocks from the Akwatia District of the Birim diamondiferous field, Ghana, J. Radioanal. Nucl. Chem., 2005, vol. 265, no. 1, pp. 101–106.

    Article  CAS  Google Scholar 

  87. Swain, K. and Kayasth, S, High purity scandium and ion-exchangers: Application in neutron activation analysis, J. Radioanal. Nucl. Chem., 2004, vol. 260, no. 3, pp. 595–599.

    Article  CAS  Google Scholar 

  88. El-Taher, A, Rare-earth elements in Egyptian granite by instrumental neutron activation analysis, Appl. Radiat. Isot., 2007, vol. 65, no. 4, pp. 458–464.

    Article  CAS  Google Scholar 

  89. El-Taher, A, Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis, Appl. Radiat. Isot., 2010, vol. 68, no. 9, pp. 1859–1863.

    Article  CAS  Google Scholar 

  90. He, M., Hu, B., and Jiang, Z, Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier, Anal. Chim. Acta, 2005, vol. 530, no. 1, pp. 105–112.

    Article  CAS  Google Scholar 

  91. Schatzel, S.J. and Stewart, B.W, Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines, Int. J. Coal Geol., 2003, vol. 54, no. 3, pp. 223–251.

    Article  CAS  Google Scholar 

  92. Ravisankar, R., Manikandan, E., Dheenathayalu, M, et al., Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA), Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 251, no. 2, pp. 496–500.

    Article  CAS  Google Scholar 

  93. Ahmed, F., Bibi, M.H., and Ishiga, H, Environmental assessment of Dhaka City (Bangladesh) based on trace metal contents in road dusts, Environ. Geol., 2007, vol. 51, no. 6, pp. 975–985.

    Article  CAS  Google Scholar 

  94. Yenisoy-Karakas, S., Gaga, E.O., Dogangun, A., and Tuncel, S.G, Determination of major and rare earth elements in bastnasite ores by ICP-AES, Anal. Lett., 2004, vol. 37, no. 13, pp. 2701–2709.

    Article  CAS  Google Scholar 

  95. Pinto F.G., Lepri F.G., Saint’Pierre T.D, et al., Direct determination of Dy, Sm, Eu, Tm, and Yb in geological samples by slurry electrothermal vaporization inductively coupled plasma mass spectrometry, Anal. Lett., 2010, vol. 43, no. 6, pp. 949–959.

    Article  CAS  Google Scholar 

  96. Kasper-Zubillaga, J.J., Carranza-Edwards, A., and Morton-Bermea, O, Heavy minerals and rare earth elements in coastal and inland dune sands of El Vizcaino Desert, Baja California Peninsula, Mexico, Mar. Georesour. Geotechnol., 2008, vol. 26, no. 3, pp. 172–188.

    Article  CAS  Google Scholar 

  97. Navarro, M.S., Andrade, S., Ulbrich, H, et al., The direct determination of rare earth elements in basaltic and related rocks using ICP-MS: Testing the efficiency of microwave oven sample decomposition procedures, Geostand. Geoanal. Res., 2008, vol. 32, no. 2, pp. 167–180.

    Article  CAS  Google Scholar 

  98. Kiseleva, D.V., Gorbunova, N.P., Neustroeva, I.I, et al., Use of photoelectron magazines to record atomic emission spectra of rocks, Anal. Kontrol, 2004, vol. 8, no. 3, pp. 288–291.

    Google Scholar 

  99. Kuznetsova, A.I. and Zarubina, O.V, Interlaboratory control of the quality of the direct atomic emission analysis using a number of rock samples within the framework of the GeoPT Geoanalytical Laboratory Testing Program, Anal. Kontrol, 2005, vol. 9, no. 3, pp. 230–239.

    Google Scholar 

  100. Zaksas, N.P., Komissarova, L.N., Galkin, P.S., and Zubareva, A.P, Atomic emission analysis of highpurity tungsten oxide and cadmium tungstate crystals by the ion-exchange separation of tungsten, Anal. Kontrol, 2013, vol. 17, no. 1, pp. 41–46.

    Google Scholar 

  101. Golik, V.M., Kisel’, T.A., and Trepachev, S.A, Determination of the impurity contents in uranic materials by the inductively couple plasma mass spectrometry, Mass-Spektrom., 2005, vol. 2, no. 4, pp. 291–296.

    CAS  Google Scholar 

  102. Zolotareva, N.I. and Grazhulene, S.S, Use of chemically active additions to enhance the sensitivity of rare earth element and thorium determination by the arcexcitation atomic emission spectrometry, Zavod. Labor., Diagn. Mater., 2011, vol. 77, no. 9, pp. 11–15.

    CAS  Google Scholar 

  103. Romanova, N.B., Pechishcheva, N.V., Shunyaev, K.Yu., et al., Determination of low Zr, Ce, La, and Y contents in refractory nickel-base alloys by the inductively coupled plasma atomic emission, Zavod. Labor., Diagn. Mater., 2011, vol. 77, no. 7, pp. 5–9.

    CAS  Google Scholar 

  104. Zhernokleeva, K.V. and Baranovskaya, V.B, Analysis of pure scandium and yttrium and their oxides by the inductively coupled plasma atomic emission spectrometry and the inductively coupled plasma mass spectrometry, Zavod. Labor., Diagn. Mater., 2010, vol. 76, no. 11, pp. 20–26.

    CAS  Google Scholar 

  105. Chumakova, N.L. and Smirnova, E.V, Determination of lanthanum, cerium, neodymium, ytterbium, and yttrium in geological samples using a multi-channel atomic emission spectrometry analyzer, Zavod. Labor., Diagn. Mater., 2010, vol. 76, no. 3, pp. 3–8.

    CAS  Google Scholar 

  106. Mysovskaya, I.N., Smirnova, E.V., Lozhkin, V.I., and Pakhomova, N.N, New data on determination of rare and rare earth elements in geological reference samples by the inductively coupled plasma mass spectrometry, Zavod. Labor., Diagn. Mater., 2009, vol. 75, no. 10, pp. 60–66.

    CAS  Google Scholar 

  107. Rusakova, V.A. and Kuznetsova, A.I, Use of a multichannel MAES analyzer to determine Cr, Ni, Co, V, Sc, Ga, Ba, and Sr in rocks and soils, Zavod. Labor., Diagn. Mater., 2008, vol. 4, no. 1, pp. 16–21.

    Google Scholar 

  108. Chen, S, Electrothermal vaporization in inductively coupled plasma atomic emission spectrometry for direct multielemental analysis of food samples with slurry sampling, J. Anal. Chem., 2005, vol. 60, no. 3, pp. 254–258.

    Article  CAS  Google Scholar 

  109. Karandashev, V.K., Turanov, A.N., and Nosenko, S.V, Analysis of molybdenum oxide by inductively coupled plasma atomic emission and mass spectrometry, J. Anal. Chem., 2011, vol. 66, no. 1, pp. 37–43.

    Article  CAS  Google Scholar 

  110. Strunina, N.N., Kovalenko, T.A., Baisova, B.T., and Adeeva, L.N, Spectral analysis of rare earth elements in sapropel ash and its fractions, Zh. Prikl. Spektrosk., 2009, vol. 76, no. 2, pp. 273–276.

    Google Scholar 

  111. Adeeva, L.N., Kovalenko, T.A., Krivonos, O.I, et al., Determination of the chemical composition of sapropel, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, no. 3, pp. 121–123.

    CAS  Google Scholar 

  112. Bettinelli, M., Spezia, S., Terni, C, et al., Determination of rare earth elements in urine by electrothermal vaporization inductively coupled plasma mass spectrometry, Rapid Commun. Mass Spectrom., 2002, vol. 16, no. 6, p. 579–584.

    Article  CAS  Google Scholar 

  113. Mihucz, V.G., Done, C.J., Tatar, E, et al., Influence of different bentonites on the rare earth element concentrations of clarified Romanian wines, Talanta, 2006, vol. 70, no. 5, pp. 984–990.

    Article  CAS  Google Scholar 

  114. Rossano, E.C., Szilagyi, Z., Malorni, A., and Pocsfalvi, G, Influence of winemaking practices on the concentration of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry, J. Agric. Food Chem., 2007, vol. 55, no. 2, pp. 311–317.

    Article  CAS  Google Scholar 

  115. Biddau, R., Bensimon, M., Cidu, R., and Parriaux, A, Rare earth elements in ground water from different Alpine aquifers, Chem. Erde, 2009, vol. 69, no. 4, pp. 327–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorbatenko.

Additional information

Original Russian Text © A.A. Gorbatenko, E.I. Revina, 2014, published in Zavodskaya Laboratoriya. Diagnostika Materialov, 2014, Vol. 80, No. 4, pp. 7–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatenko, A.A., Revina, E.I. A review of instrumental methods for determination of rare earth elements. Inorg Mater 51, 1375–1388 (2015). https://doi.org/10.1134/S0020168515140058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515140058

Keywords

Navigation