Skip to main content
Log in

Ceramic materials and phosphors based on silicon nitride and sialon

  • Published:
Inorganic Materials Aims and scope

Abstract

This review covers some of the main trends in the field of synthesis and the applications of materials based on silicon nitride presented in publications over the past 10–15 years. Attention is paid to the technique for synthesizing nitride and oxynitride compounds and for the production of ceramic construction materials and phosphors in silicon nitride systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berroth, K., Komplexe Strukturen aus Hochleistungskeramik, Dtsch. Keram. Ges., 2005, vol. 82, no. 13 pp. 91–98.

    Google Scholar 

  2. Samsonov, G.V., Nemetallicheskie nitridy (Nonmetallic Nitrides), Moscow: Metallurgiya, 1969.

    Google Scholar 

  3. Samsonov, G.V., Kulik, O.P., and Polishchuk, V.S., Poluchenie i metody analiza nitridov (Production and Analysis Methods of Nitrides), Kiev: Naukova Dumka, 1978.

    Google Scholar 

  4. Guzman, I.Ya., Research on the reactive sintering of ceramics based on Si compounds of the Si-C-O-N system, Doctoral Dissertation, Moscow: Mendeleev Moscow Institute of Chemical Technology, 1978, pp. 15–32, 149–152.

    Google Scholar 

  5. Andrievskii, R.A. and Spivak, I.I., Nitrid kremniya i materialy na ego osnove (Silicon Nitride and Related Materials), Moscow: Metallurgiya, 1984.

    Google Scholar 

  6. Butler, E.G., Engineering ceramics: applications and testing requirements, Int. J. High Tech. Ceram., 1988, vol. 4, nos. 2–4, pp. 93–102.

    CAS  Google Scholar 

  7. Vikulin, V.V., Postnikov, A.A., and Romashin, A.G., Problems in creating materials and products from silicon nitride and carbide, Vopr. Oborony Tekh., 1989, no. 3.

    Google Scholar 

  8. Thümmler, F., Engineering ceramics, J. Eur. Ceram. Soc., 1990, vol. 6, no. 3, pp. 139–151.

    Google Scholar 

  9. Romashin, A.G. and Vikulin, V.V., Structural ceramics for engines, Ceramics today-tomorrow’s ceramics (Proc. of the Int. Symp. on Modern Ceramics Technologies), Italy: Montecatini Terme, 1990, pp. 2725–2730.

    Google Scholar 

  10. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Engineering Ceramics), Moscow: Metallurgiya, 1986.

    Google Scholar 

  11. Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Engineering), Moscow: Nauchtekhlitizdat, 2003.

    Google Scholar 

  12. Zhuravleva, N.V. and Lukin, E.S., Ceramics based on silicon nitride, Ogneupory, 1993, no. 1, pp. 6–12.

    Google Scholar 

  13. Andreeva, M.G., Babii, O.A., Gogotsi, Yu.G., Grigor’ev, O.N., Ikonnik, N.K., Trunov, G.V., and Yaroshenko, V.P., Hot pressing, structure and properties of materials based on silicon nitride, in Materialy na osnove nitridov (Nitride-Based Materials), Kiev: IPM, 1988, pp. 173–181.

    Google Scholar 

  14. Andrievskii, R.A., Silicon nitride: synthesis and properties, Usp. Khim., 1995, vol. 64, no. 4, pp. 311–329.

    CAS  Google Scholar 

  15. Hillert, M. and Jonsson, S., Calphad: Comput. Coupling Phase Diagrams Thermochem., 1992, vol. 16, p. 199.

    CAS  Google Scholar 

  16. Kostanovskii, A.V. and Evseev, A.V., Experimental studies of the melting parameters of silicon nitride, Teplofiz. Vys. Temp., 1994, vol. 32, no. 1, pp. 26–31.

    CAS  Google Scholar 

  17. Wild, S., Grieveson, P., and Jack, K.H., The crystal structures of alpha and beta silicon and germanium nitrides, Spec. Ceram., 1972, vol. 5, pp. 385–393.

    Google Scholar 

  18. Grün, R., The crystal structure of β-Si3N4: structural and stability considerations between α- and β-Si3N4, Acta Crystallogr., 1979, vol. 35, pp. 800–804.

    Google Scholar 

  19. Toraya, H., Crystal structure refinement of α-Si3N4 using synchrotron radiation powder diffraction data: unbiased refinement strategy, J. App. Cryst, 2000, vol. 33, pp. 95–102.

    CAS  Google Scholar 

  20. Zerr, A., Miehe, G., Serhgiou, G., Schwarz, M., Kroke, E., Riedel, R., Fueb, H., Kroll, P., and Boehler, R., Synthesis of cubic silicon nitride, Nature, 1999, vol. 400, pp. 340–342.

    CAS  Google Scholar 

  21. Schwarz, M., Miehe, G., Zerr, A., Kroke, E., Poe, B.T., Fuess, H., and Riedel, R., Spinel-Si3N4: multi-anvil press synthesis and structural refinement, Adv. Mat., 2000, vol. 12, pp. 883–887.

    CAS  Google Scholar 

  22. He, H., Sekine, T., Kobayashi, T., and Hirosaki, H., Shock-induced phase transition of β-Si3N4 to c-Si3N4, Phys. Rev. B, 2000, vol. 62, pp. 11412–11417.

    CAS  Google Scholar 

  23. Hausner, H., Sintering and microstructure of non-oxide ceramics, 12th Jnt. Conf. Science of Ceramics, Saint-Vincent, 1983, vol. 12, pp. 229–243.

    Google Scholar 

  24. Merzhanov, A.G., Self-propagating high-temperature synthesis, in Sovremennye problemy fizicheskoi khimii (Modern Problems of Physical Chemistry), Moscow: Khimiya, 1983, pp. 6–45.

    Google Scholar 

  25. Rhodes, W. and Natansonh, S., Powders for advanced structural ceramics, Am. Ceram. Soc. Bull., 1989, vol. 68, no. 10, pp. 1804–1812.

    CAS  Google Scholar 

  26. Segal, D.L., A review of preparative routes to silicon nitride powders, Br. Ceram. Trans. J., 1986, vol. 85, no. 6, pp. 184–187.

    CAS  Google Scholar 

  27. Schwier, G., Nietfeld, G., and Franz, G., Production and characterization of silicon nitride powders, Mat. Sci. Forum, 1989, vol. 47, pp. 1–20.

    CAS  Google Scholar 

  28. Herrmann, M., Schulz, I., and Hintermayer, J., Materials from low cost silicon nitride powders, 4th Int. Conf. of the European Ceramic Society, Riccione, 1995, vol. 2, p. 211.

    Google Scholar 

  29. Hirata, T., Akiyama, K., and Morimoto, T., Synthesis of β-Si3N4 particles from α-Si3N4 particles, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 1191–1195.

    CAS  Google Scholar 

  30. Ekelund, M. and Forslund, B., Carbothermal preparation of silicon nitride: influence of starting material and synthesis parameters, J. Am. Ceram. Soc., 1992, vol. 75, pp. 532–539.

    CAS  Google Scholar 

  31. Mukas’yan, A.S., Stepanov, B.V., Gal’chenko, Yu.A., and Borovinskaya, I.P., On the mechanism of the structure formation of silicon nitride upon silicon combustion in nitrogen, Fiz. Goreniya Vzryva, 1990, no. 1, pp. 45–52.

    Google Scholar 

  32. Arakawa, T., State of the art of silicon nitride powders obtained by thermal decomposition of Si(NH)2 and the injection molding thereof, in Silicon Nitride I, New York: Elsevier, 1987, p. 81.

    Google Scholar 

  33. Brink, R. and Lange, H., Investigations on the synthesis of fine-grained, high-purity β-Si3N4 powder by crystallization of amorphous precursors, Key Eng. Mater., 1989, vols. 89–91, pp. 73–74.

    Google Scholar 

  34. Grabis, Ya.P., Plasma chemical synthesis of finely-dispersed composite powders based on nitrides, in Materialy na osnove nitridov (Nitride-Based Materials), Kiev: IPM, 1988, pp. 46–53.

    Google Scholar 

  35. Grabis, J., Zalite, I., and Reichel, U., Advantages and characteristics of nano-powders produced using plasma technology, Dtsch. Keram. Ges., 2000, vol. 77, no. 7, pp. 8–10.

    Google Scholar 

  36. Zhu, H.L., Han, F.D., Bi, J.Q., Bai, Y.J., Qi, Y.X., Pang, L.L., Wang, C.G., Li, S.J., and Lu, C.W., Facile synthesis of Si3N4 nanocrystals via an organic-inorganic reaction route, J. Am. Ceram. Soc., 2009, vol. 92, no. 2, pp. 535–538.

    CAS  Google Scholar 

  37. Guo, C.L., Xing, Z., Ma, X.J., Xu, L.Q., and Qian, Y.T., Solvothermal synthesis of Si3N4 nanomaterials at a low temperature, J. Am. Ceram. Soc., 2008, vol. 91, no. 5, pp. 1725–1728.

    CAS  Google Scholar 

  38. Borodianska, H., Krushinskaya, L., Makarenko, G., Sakka, Y., Uvarova, I., and Vasylkiv, O., Si3N4-TiN nanocomposite by nitration of TiSi2 and consolidation by hot pressing and spark plasma sintering, J. Nanosci. Nanotechnol., 2009, vol. 9, no. 11, pp. 6381–6389.

    CAS  Google Scholar 

  39. Hayashi, F., Ishizu, K., and Iwamoto, M., Fast and almost complete nitridation of mesoporous silica MCM-41 with ammonia in a plug-flow reactor, J. Am. Ceram. Soc., 2010, vol. 93, no. 1, pp. 104–110.

    CAS  Google Scholar 

  40. Pech-Canul, M.I., de la Peña, J.L., and Leal-Cruz, A.L., Effect of processing parameters on the deposition rate of Si3N4/Si2B2O by chemical vapor infiltration and the in situ thermal decomposition of Na2SiF6, Appl. Phys. A: Mater. Sci. Process., 2007, vol. 89, no. 3, pp. 729–735.

    CAS  Google Scholar 

  41. Jiang, J., A new synthesis method of α-silicon nitride powder-reductive combustion synthesis from silicon and silicon dioxide, J. Am. Ceram. Soc., 2009, vol. 92, no. 12, pp. 3095–3097.

    CAS  Google Scholar 

  42. Chukhlomina, L.N., Synthesis of nitrides of III–VI groups and composite materials on their basis by nitriding the ferroalloys in a combustion mode, Doctoral (Eng.) Dissertation, Tomsk: Tomsk Polytech. Univ., 2009.

  43. Chukhlomina, L., Vitushkina, O., and Vereshchagin, V., Self-propagating high-temperature synthesis of silicon-nitride ceramic mix using ferro-silicon and ilmenite, Glass Ceram., 2011, vol. 67, pp. 277–280.

    CAS  Google Scholar 

  44. Reutenauer, J., Coons, T., Hill, C., Arpin, K., Kmetz, M., and Suib, S., Synthesis and characterization of polyvinylsilazane as a precursor for Si3N4 based ceramic materials, J. Mater. Sci., 2011, vol. 46, no. 20, pp. 6538–6544.

    CAS  Google Scholar 

  45. Fu, X., Peng, Z., Zhu, N., Wang, C., Fu, Z., Qi, L., and Miao, H., Aligned Si3N4@SiO2 coaxial nanocables derived from a polymeric precursor, Nanotecnol., 2010, vol. 21, no. 24, pp. 245603–245609.

    Google Scholar 

  46. Luyjew, K., Tonanon, N., and Pavarajarn, V., Mesoporous silicon nitride synthesis via the carbothermal reduction and nitridation of carbonized silica/RF gel composite, J. Am. Ceram. Soc., 2008, vol. 91, no. 4, pp. 1365–1368.

    CAS  Google Scholar 

  47. Watari, K., High thermal conductivity non-oxide ceramics, J. Ceram. Soc. Jpn., 2001, vol. 109, pp. 7–16.

    Google Scholar 

  48. Inamura, Ya., Ogneupory i ikh primenenie (Refractory Materials and Their Application), Moscow: Metallurgiya, 1984.

    Google Scholar 

  49. Petzow, G. and Herrmann, M., Silicon nitride ceramics, Struct. Bonding, 2002, vol. 102, pp. 47–167.

    CAS  Google Scholar 

  50. Einarsrud, M.A. and Mitomo, M., Mechanism of grain growth of β-SiAlON, J. Am. Ceram. Soc., 1993, vol. 76, no. 6, pp. 1624–1626.

    CAS  Google Scholar 

  51. Herrmann, M., Schulz, I., Hermel, W., Schubert, C., and Wendt, A., Some new aspects of microstructural design of β-Si3N4 ceramics, Z. Metallkunde, 2001, vol. 92, no. 7, pp. 788–795.

    CAS  Google Scholar 

  52. Huang, Y., Zhou, L., Tang, Q., Xie, Z., and Yang, J., Water-based gelcasting of surface-coated silicon nitride powder, J. Am. Ceram. Soc., 2001, vol. 84, no. 4, pp. 701–707.

    CAS  Google Scholar 

  53. Riley, F.L., Silicon nitride and related materials, J. Am. Ceram. Soc., 2000, vol. 83, pp. 245–265.

    CAS  Google Scholar 

  54. Shen, Z. and Nygren, M., On the extension of the α-sialon phase area in yttrium and rare-earth doped systems, J. Eur. Ceram. Soc., 1997, vol. 17, no. 13, pp. 1639–1645.

    CAS  Google Scholar 

  55. Ewais, E.M., Attia, M.A., Abousree-Hegazy, A., and Bordia, R.K., Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of α- and β-Si3N4, Ceram. Int., 2010, vol. 36, no. 4, 1327–1338.

    CAS  Google Scholar 

  56. Huang, Z.K., Rosenflanz, A., and Chen, I.W., Pressureless sintering of Si3N4 ceramic using AlN and rareearth oxides J. Am. Ceram. Soc., 2005, vol. 80, no. 5, pp. 1256–1262.

    Google Scholar 

  57. Lin, Y., Ning, X.S., Zhou, H., and Xu, W., Study on the thermal conductivity of Si3N4 sintered with Y2O3-MgO additive system, Key Eng. Mater., 2002, vols. 224–226, pp. 813–818.

    Google Scholar 

  58. Yang, H., Yang, G., Tang, Y., and Yuan, R., The characteristics of the pressureless sintered Si3N4-MgO-CeO2 ceramics, J. Wuhan Univ. Technol., Mater. Sci. Ed., 1996, vol. 11, no. 4, pp. 1–6.

    Google Scholar 

  59. Su, S., Bao, Y., Wang, L., and Li, J., Effect of Y2O3, CeO2 on sintering properties of Si3N4 ceramics, J. Rare Earths, 2003, vol. 21, no. 3, pp. 357–359.

    Google Scholar 

  60. Liu, X.-J., Huang, Z.-Y., Ge, Q.-M., Sun, X.-W., and Huang, L.-P., Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive, J. Eur. Ceram. Soc., 2005, vol. 25, no. 14, pp. 3353–3359.

    CAS  Google Scholar 

  61. Chockalingam, S., Earl, D.A., and Amarakoon, V.R., Phase transformation and densification behavior of microwave-sintered Si3N4-Y2O3-MgO-ZrO2 system, Int. J. Appl. Ceram. Technol., 2009, vol. 6, no. 1, pp. 102–110.

    CAS  Google Scholar 

  62. Bondanini, A., Monteverde, F., and Bellos, A., Influence of powder characteristics and powder processing routes on microstructure and properties of hot pressed silicon nitride materials, J. Mater. Sci., 2001, vol. 36, no. 20, pp. 4851–4862.

    CAS  Google Scholar 

  63. Shan, S.-Y., Jia, Q.-M., Jiang, L.-H., Wang, Y.-M., and Yang, J.-F., Microstructure control and mechanical properties of porous silicon nitride ceramics, Ceram. Int., 2009, vol. 35, no. 8, pp. 3371–3374.

    CAS  Google Scholar 

  64. Komeya, K., Komatsu, M., Kameda, T., Goto, Y., and Tsuge, A., High-strength silicon nitride ceramics obtained by grain-boundary crystallization, J. Mater. Sci., 1991, vol. 26, no. 20, pp. 5513–5516.

    CAS  Google Scholar 

  65. Liu, X.-J., Huang, Z.-Y., Ge, Q.-M., Sun, X.-W., and Huang, L.-P., Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 3353–3359.

    CAS  Google Scholar 

  66. Ling, G. and Yang, H., Pressureless sintering of silicon nitride with magnesia and yttria, Mater. Chem. Phys., 2005, vol. 90, pp. 31–34.

    CAS  Google Scholar 

  67. Zheng, Y.S., Knowles, K.M., Vieira, J.M., Lopes, A.B., and Oliveira, F.J., Microstructure, toughness and flexural strength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbium oxide, J. Microsc., 2001, vol. 201, no. 2, pp. 238–249.

    CAS  Google Scholar 

  68. Balázsi, Cs., Wéber, F., Kôvér, Zs., Shen, Z., Kónya, Z., Kasztovszky, Zs., Vértesy, Z., Biró, L.P., Kiricsi, I., and Arató, P., Application of carbon nanotubes to silicon nitride matrix reinforcements, Curr. Appl. Phys., 2006, vol. 6, no. 2, pp. 124–130

    Google Scholar 

  69. Kim, H.D., Han, B.D., Park, D.S., Lee, B.T., and Becher, P.F., A novel two step sintering process to obtain a bimodal microstructure in silicon nitride, J. Am. Ceram. Soc., 2002, vol. 85, no. 1, pp. 245–252.

    CAS  Google Scholar 

  70. Hojo, J., Microstructure change in silicon nitride nanoceramics with the different second phases, J. Ceram. Soc. Jpn., 2004, vol. 5, no. 112, pp. 1002–1008.

    Google Scholar 

  71. Vuckovic, A., Boskovic, S., and Zivkovic, Lj., Synthesis of “in situ” reinforced silicon nitride composites, J. Serb. Chem. Soc., 2004, vol. 69, no. 1, pp. 59–67.

    CAS  Google Scholar 

  72. Ribeiro, S. and Strecker, K., Si3N4 ceramics sintered with Y2O3/SiO2 and R2O3(ss)/SiO2: a comparative study of the processing and properties, Mater. Res., 2004, vol. 7, pp. 377–383.

    CAS  Google Scholar 

  73. Lin, H.T. and Ferber, M.K., Mechanical reliability evaluation of silicon nitride ceramic components after exposure in industrial gas turbine, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2789–2797.

    CAS  Google Scholar 

  74. Wills, R.R., Sintered Si3N4-based ceramics: processing and engineering properties, Ceram. Eng. Sci. Proc., 2008, vol. 1, nos. 7–8, pp. 398–404.

    Google Scholar 

  75. Jack, K.H., Nitrogen ceramics for engine applications, Mater. Sci. Forum, 2000, vols. 325–326, pp. 255–264.

    Google Scholar 

  76. Katz, N.R., At the cutting edge, Ceram. Ind., 2000, vol. 150, no. 4, pp. 19–23.

    Google Scholar 

  77. Kawamura, H., Practical use of ceramic components and ceramic engines, in Ceramic Materials and Components for Engines, Weinheim: Wiley-VCH, 2001, pp. 27–30.

    Google Scholar 

  78. Brandt, G., Ceramic cutting tools, in Ceramic Materials and Components for Engines, Weinheim: Wiley-VCH, 2001, pp. 21–24.

    Google Scholar 

  79. Popp, M., Sternagel, R., Pfeifer, W., Blug, B., Meier, S., Wotting, G., and Frasseck, L., Hybrid and ceramic rolling bearings with modified surface and low friction rolling contact, in Ceramics, Processing, Reliability, Triboloy and Wear, Euromat, 2000, vol. 12, pp. 449–455.

    CAS  Google Scholar 

  80. Van Landeghem, H.P., Gouné, M., and Redjaïmia, A., Investigation of a ferrite/silicon nitride composite concept aimed at automotive applications, Steel Res. Int., 2012, vol. 83, no. 6, pp. 590–593.

    Google Scholar 

  81. Zheng, G., Zhao, J., Gao, Z., and Cao, Q., Cutting performance and wear mechanisms of sialon-Si3N4 graded nano-composite ceramic cutting tools, Int. J. Adv. Manuf. Technol., 2012, vol. 58, nos. 1–4, pp. 19–28.

    Google Scholar 

  82. Wotting, G., Hennicke, J., Feuer, H., Thiemann, K.H., Vollmer, D., Fechter, E., Sticher, F., and Geyer, A., Reliability and reproducibility of silicon nitride valves: experiences of a field test, in Ceram. Mat. and Comp. for Engines, Weinhaim: Wiley VCH, 2001, pp. 181–185.

    Google Scholar 

  83. Zalite, I., Zilinska, N., and Kladler, G., Some sialons prepared from nanopowders by hot pressing, J. Phys.: Conf. Ser., 2007, vol. 93, p. 012008.

    Google Scholar 

  84. Lee, Ching-Huan, Lu, H.H., Wang, C.A., Nayak, P., and Huang, J.L., Effect of heating rate on spark plasma sintering of a nanosized β-Si3N4-based powder, J. Am. Ceram. Soc., 2011, vol. 94, no. 4, pp. 1182–1190.

    CAS  Google Scholar 

  85. Lee, Ching-Huan, Lu, H.H., Wang, C.A., Nayak, P., and Huang, J.L., Influence of conductive nano-TiC on microstructural evolution of Si3N4-based nanocomposites in spark plasma sintering, J. Am. Ceram. Soc., 2011, vol. 94, no. 3, pp. 959–967.

    CAS  Google Scholar 

  86. Li, J.L., Chen, F., and Niu, J.Y., Low temperature sintering of Si3N4 ceramics by spark plasma sintering technique, Adv. Appl. Ceram., 2011, vol. 110, no. 1, pp. 20–24.

    CAS  Google Scholar 

  87. Hotta, M., Shinoura, T., Enomoto, N., and Hojo, J., Spark plasma sintering of nanosized amorphous silicon nitride powder with a small amount of sintering additive, J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1544–1546.

    CAS  Google Scholar 

  88. Peng, G., Liang, M., Liang, Z., Li, Q., Li, W., and Liu, Q., Spark plasma sintered silicon nitride ceramics with high thermal conductivity using MgSiN2 as additives, J. Am. Ceram. Soc., 2009, vol. 92, no. 9, pp. 2122–2124.

    CAS  Google Scholar 

  89. Fu, R.L. and Agathopoulos, S., Nanostructure and bimodal structure of Si3N4 ceramics developed by spark plasma sintering method, Adv. Appl. Ceram., 2009, vol. 108, no. 6, pp. 358–362.

    CAS  Google Scholar 

  90. Yan, F., Chen, F., Shen, Q., and Zhang, L., Spark plasma sintering of α-Si3N4 ceramics with MgO-Al2O3 as sintering additives, Key Eng. Mater., 2007, vol. 351, pp. 176–179.

    CAS  Google Scholar 

  91. Peng, H., Spark plasma sintering of Si3N4-based ceramics-sintering mechanism: tailoring microstructure. Evaluating properties, Doctoral (Chem.) Dissertation, Stockholm: Stockholm Univ., 2004.

    Google Scholar 

  92. Sigenori Ito, K. and Takeyuki Mizuno, T., US Patent 4783297, 1988.

  93. Kiggans, J.O. and Tiegs, T.N., Micro wave processing of Si3N4, Mater. Res. Soc., Proceedings Spring Meeting, San Francisco, 1992.

    Google Scholar 

  94. Chockalingam, S., Earl, D.A., Amarakoon, V.R.W., Phase transformation and densification behavior of microwave-sintered Si3N4-Y2O3-MgO-ZrO2 system, Int. J. Appl. Ceram. Technol., 2009, vol. 6, no. 1, pp. 102–110.

    CAS  Google Scholar 

  95. Kanti Paul, R., Lee, Kap-Ho, Kim, Hai-Doo, and Lee, Byong-Taek, Nanosilver-coated porous SiC-Si3N4 composite using microwave-assisted process, J. Am. Ceram. Soc., 2008, vol. 91, no. 8, pp. 2509–2513.

    Google Scholar 

  96. Kobayashi, Y., Matsuo, E., and Kato, K., Hot-gas spin testing of ceramic radial turbine rotor at TIT around 1250°C, SAE Tech. Pap., 1988, pp. 880727.

    Google Scholar 

  97. Kobayashi, Y., Matsuo, E., Inagaki, T., and Ozawa, T., Hot-gas spin testing of ceramic radial turbine rotor at TIT 1400°C, SAE Tech. Pap., 1991, pp. 910401.

    Google Scholar 

  98. Bandyopadhyay, G., Neil, J.T., and Viechnicki, D.J., 37th Sagamore Army Materials Research Conference, 1991, pp. 232–245.

    Google Scholar 

  99. Tiegs, T.N., Nunn, S.D., Breavers, T.M., Menchhofer, P.A., Barker, D.L., and Coffey, D.W., Ceram. Eng. Sci. Proc., 1995, vol. 16, pp. 467–473.

    CAS  Google Scholar 

  100. Yamamoto, H., Akiyama, K., and Murakami, Y., Densification behaviors and high-temperature characteristics of Si3N4 sintered bodies using Al2O3-Y2O3 additives, J. Eur. Ceram. Soc., 2006, vol. 26, no. 6, pp. 1059–1067.

    CAS  Google Scholar 

  101. Reidel, G., Kruener, H., Steiner, M., and Stingl, P., US Patent 20060003885, 2006.

  102. Perevislov, S.N., Liquid-phase-sintered materials based on silicon nitride with oxide addition in the MgO-Y2O3-Al2O3 system, Perspekt. Mater., 2013, no. 10, p. 47.

    Google Scholar 

  103. Pavarajarn, V., Precharyutasin, R., and Praserthdam, P., Synthesis of silicon nitride fibers by the carbothermal reduction and nitridation of rice husk ash, J. Am. Ceram. Soc., 2010, vol. 93, no. 4, pp. 973–979.

    CAS  Google Scholar 

  104. Hu, H., Zhou, W., Luo, F., Zhu, D.M., and Xu, J., A new synthesis method for producing Si3N4 whiskers by heat treating porous Si objects, J. Am. Ceram. Soc., 2008, vol. 91, no. 11, no. 3800–3802.

    Google Scholar 

  105. Yang, W., Gao, F., Wang, H., Zheng, X., Xie, Z., and An, L., Synthesis of ceramic nanocomposite powders with in situ Formation of Nanowires/Nanobelts J. Am. Ceram. Soc., 2008, vol. 91, no. 4, pp. 1312–1315.

    CAS  Google Scholar 

  106. Kargin, Yu.F., Ivicheva, S.N., Ovsyannikov, N.A., Lysenkov, A.S., Chernyavskii, A.S., Alad’ev, N.A., and Kutsev, S.V., Nanofilaments of Si3N4, Inorg. Mater., 2009, vol. 45, no. 5, pp. 511–516.

    CAS  Google Scholar 

  107. Pogrebnyak, A.D., Shpak, A.P., Azarenkov, N.A., and Beresnev, V.M., Structures and properties of hard and superhard nanocomposite coatings, Usp. Fiz. Nauk, 2009, vol. 179, no. 1, pp. 35–64.

    Google Scholar 

  108. Kawano, S., Takahashi, J., and Shimada, S. Shiro, Fabrication of TiN/Si3N4 ceramics by spark plasma sintering of Si3N4 particles coated with nanosized TiN prepared by controlled hydrolysis of Ti(O-i-C3H7)4, J. Am. Ceram. Soc., 2003, vol. 86, no. 4, pp. 701–705.

    CAS  Google Scholar 

  109. Lences, Z., Sajgalk, P., Toriyama, M.E., Brito, M., and Kanzaki, S., Multifunctional Si3N4/(β-sialon + TiN) layered composites-particulate silicon nitridebased composites, J. Eur. Ceram. Soc., 2000, vol. 20, no. 3, pp. 347–355.

    CAS  Google Scholar 

  110. Jiang, D., Vleugels, J., Van der Biest, O., Verheyen, R., Liu, W., and Lauwers, B., Electrically conductive and wear resistant Si3N4-based composites with TiC0.5N0.5 particles for electrical discharge machining, Mater. Sci. Forum, 2005, vols. 492–493, pp. 27–32.

    Google Scholar 

  111. Kawano, S., Takahashi, J., and Shimada, S., Highly electroconductive TiN/Si3N4 composite ceramics fabricated by spark plasma sintering of Si3N4 particles with a nano-sized TiN coating, J. Mater. Chem., 2002, vol. 12, no. 2, pp. 361–365.

    CAS  Google Scholar 

  112. Cherniakova, I., Zdolnik, S., and Petrovsky, V., Effect of cooling rate after hot pressing on electrical conductivity of Si3N4-ceramics with TiO2 and TiH2 additives, Process. Appl. Ceram., vol. 4, no. 2, pp. 63–68.

  113. Urbanovich, V.S., Chuevskii, A.V., Vlajic, M., et al., X-Ray Diffraction Characterization of Silicon Nitride-Titanium Nitride Composites Sintered at High Pressures, in Sbornik dokladov FTTP-2005 (Proc. FTTP-2005), Minsk: Belarussk. Akad. Nauk, 2005, pp. 454–456.

    Google Scholar 

  114. Duan, R.G., Roebben, G., Vleugels, J., and Van der Biest, O., TiO2 additives for in situ formation of toughened silicon nitride-based composites, Materials Letters, 2003, vol. 57, pp. 4156–4161.

    CAS  Google Scholar 

  115. Gogotsi, Yu.G. and Porz, F., The oxidation of particulate-reinforced Si3N4-TiN composites, Corros. Sci., 1992, vol. 33, no. 4, pp. 627–640.

    CAS  Google Scholar 

  116. Kobayashi, M., Meguro, T., Komeya, K., Noguchi, K., Yokoyama, T., and Tatami, J., Effect of TiO2/AlN addition to the system Si3N4-Y2O3-Al2O3 on air oxidation behavior of sintered bodies, J. Mater. Sci. Soc. Jpn., 2001, vol. 38, no. 1, pp. 49–58.

    Google Scholar 

  117. Kargin, Yu.F., Ivicheva, S.N., Lysenkov, A.S., Ovsyannikov, N.A., Shvorneva, L.I., and Solntsev, K.A. Si3N4/TiN composites produced from TiO2-modified Si3N4 powders, Inorg. Mater., 2012, vol. 48, no. 9, pp. 897–902.

    CAS  Google Scholar 

  118. Martin, C., Cales, B., Vivier, P., and Mathieu, P., Electrical discharge machinable ceramic composites, Mater. Sci. Eng. A, 1989, vol. 109, pp. 351–356.

    Google Scholar 

  119. Shuichi, K., Kenichi, T., Junichi, T., and Shiro, S., Preparation of nano-sized TiN coated α-Si3 a nanosized TiN coating, J. Mater. Chem., 2002, vol. 12, pp. 361–365.

    Google Scholar 

  120. Zheng, S., Gao, L., Watanabe, H., and Meguro, T., Improving the microstructure of Si3N4-TiN composites using various PEIs to disperse raw TiO2 powder, Ceram. Int., 2007, vol. 33, no. 3, pp. 355–359.

    CAS  Google Scholar 

  121. Krnel, K., Maglica, A., and Kosma, T., β-SiAlON/TiN nanocomposites prepared from TiO2-coated Si3N4 powder, J. Eur. Ceram. Soc., 2008, vol. 28, no. 5, pp. 953–957.

    CAS  Google Scholar 

  122. Maglica, A., Krnel, K., and Kosmac, T., Preparation of Si3N4-TiN ceramic composites, Mater. Technol., 2010, vol. 44, no. 1, pp. 31–35.

    CAS  Google Scholar 

  123. Shuichi, K., Junichi, T., and Shiro, S., Spark plasma sintering of nano sized TiN prepared from TiO2 by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solution, J. Am. Ceram. Soc., 2003, vol. 86, no. 9, pp. 1609–1611.

    Google Scholar 

  124. Yang, W.W., Inada, M., Tanaka, Y., Enomoto, N., and Hojo, J., Fabrication of translucent silicon nitride ceramics with various sintering aids, Int. J. Nanotechnol., 2013, vol. 10, nos. 1–2, pp. 119–125.

    CAS  Google Scholar 

  125. Cano, I.G., Borovinskaya, I.P., Rodrigues, M.A., and Grachev, V.V., Effect of dilution and porosity on selfpropagating high-temperature synthesis of silicon nitride, J. Amer. Ceram. Soc., 2002, vol. 85, no. 9, pp. 2209–2211.

    CAS  Google Scholar 

  126. Yao, D., Zeng, Y.P., Zuo, K., and Jiang, D., Porous Si3N4 ceramics prepared via nitridation of Si powder with Si3N4 filler and postsintering, Int. J. Appl. Ceram. Technol., 2012, vol. 9, no. 2, pp. 239–245.

    CAS  Google Scholar 

  127. Yu, J., Yang, J., Li, S., Li, H., Huang, Y., and Colombo, P., Preparation of Si3N4 foam ceramics with nest-like cell structure by particle-stabilized foams, J. Am. Ceram. Soc., 2012, vol. 95, no. 4, pp. 1229–1233.

    CAS  Google Scholar 

  128. Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., and Bao, C., Porous silicon nitride ceramics fabricated by carbothermal reduction-reaction bonding, Mater. Manuf. Processes, 2011, vol. 26, no. 6, pp. 855–861.

    CAS  Google Scholar 

  129. Yu, F., Wang, H., Yang, J., and Gao, J., Effects of organic additives on microstructure and mechanical properties of porous Si3N4 ceramics, Bull. Mater. Sci., 2010, vol. 33, no. 3, pp. 285–291.

    CAS  Google Scholar 

  130. Jiang, Guang-Peng, Yang, Jian-Feng, Gao, Ji-Qiang, and Niihara Koichi, Porous silicon nitride ceramics prepared by extrusion using starch as binder, J. Am. Ceram. Soc., 2008, vol. 91, no. 11, pp. 3510–3516.

    CAS  Google Scholar 

  131. Santra, T.S., Bhattacharyya, T.K., Mishra, P., Tseng, F.G., and Barik, T.K., Biomedical applications of diamond-like nanocomposite thin films, Sci. Adv. Mater., 2012, vol. 4, no. 1, pp.110–113.

    CAS  Google Scholar 

  132. Afanasiev, S., Tsapko, L., Kurzina, I., Chuhlomina, L., and Babokin, V., Effect of model biological media of stability of complex of silver nanoparticles applied onto silicon nitride substrate, Bull. Exp. Biol. Med., 2010, vol. 150, no. 1, pp. 160–164.

    CAS  Google Scholar 

  133. Subramanian, B., Ananthakumar, R., Akira, K., Jayachandran, M., and Bandyopadhyay, A., Nanocomposite Ti-Si-N coatings deposited by reactive dc magnetron sputtering for biomedical applications, J. Amer. Ceram. Soc, 2012, vol. 95, no. 9, pp. 2746–2752.

    Google Scholar 

  134. Nama, B.K.W., Park, S.H., and Kim, J.S., Crackedhealing and the bending strength of Si3N4 composite ceramics with SiO2 additions, J. Ceram. Process. Res., 2009, vol. 10, no. 4, pp. 497–501.

    Google Scholar 

  135. Kargin, Yu.F., Lysenkov, A.S., Ivicheva, S.N., Zakharov, A.I., Popova, N.A., and Solntsev, K.A., Microstructure and properties of silicon nitride ceramics with calcium aluminate additions, Inorg. Mater., 2010, vol. 46, no. 7, pp. 802–806.

    Google Scholar 

  136. Kargin, Yu.F., Ivicheva, S.N., Lysenkov, A.S., Alad’ev, N.A., Kutsev, S.V., and Shvorneva, L.I., Preparation of silicon carbide whiskers from silicon nitride, Inorg. Mater., 2009, vol. 45, no. 7, pp. 758–766.

    CAS  Google Scholar 

  137. Kargin, Yu.F., Lysenkov, A.S., Ivicheva, S.N., Zakorzhevskii, V.V., Borovinskaya, I.P., Kutsev, S.V., and Solntsev, K.A., Hot-pressed Si3N4 ceramics containing CaO-Al2O3-AlN modifying additives, Inorg. Mater., 2011, vol. 48, no. 11, pp. 1158–1163.

    Google Scholar 

  138. Borovinskaya, I.P., Zakorzhevskii, V.V., Zakharov, A.I., Kargin, Yu.F., Lysenkov, A.S., and Popova, N.A., RF Patent 2458023, Byull. Izobret., 2012, no. 22.

    Google Scholar 

  139. Ha, R., Kim, S., Kim, H.J., Lee, J.C., Bae, J.S., and Kim, Y., Crystallization behavior of silicon quantum dots in a silicon nitride matrix, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 2, pp. 1448–1452.

    CAS  Google Scholar 

  140. Barshilia, H.C., Tanwer, A., Siju, Mahadik, D.B., and Rao, A.V., Design of Ag-Si3N4 nanocermet coatings for photothermal conversion applications, Nanosci. Nanotechnol. Lett., 2012, vol. 4, no. 1, pp. 41–47.

    CAS  Google Scholar 

  141. Yin, R., Li, J., Fan, J., and Liu, X., Microstructure characteristics of Fe-Mo/Si3N4 cermet during sintering, Adv. Sci. Lett., 2012, vol. 10, no. 1, pp. 243–248.

    CAS  Google Scholar 

  142. Cai, Y., Synthesis and characterization of nitrogenrich calcium α-sialon ceramics, Doctoral Dissertation, Stockholm: Stockholm Univ., 2009.

    Google Scholar 

  143. Kaufmann, U., Kunzer, M., Kohler, K., Obloh, H., Pletschen, W., Schlotter, P., Wagner, J., Ellens, A., Rossner, W., and Kobusch, M., Single chip white LEDs, Phys. Stat. Sol. A, 2002, vol. 192, no. 2, pp. 246–253.

    CAS  Google Scholar 

  144. Nakamura, S. and Fasol, G., The Blue Laser Diode: GaN Based Light Emitters and Lasers, Berlin: Springer, 1997.

    Google Scholar 

  145. Park, J.K., Choi, K.J., Yeon, J.H., et al., Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor, Appl. Phys. Lett., 2006, vol. 88, no. 4, p. 043511

    Google Scholar 

  146. Park, J.K., Kim, C.H., Park, S.H., Park, H.D., and Park, S.Y., Application of strontium silicate yellow phosphor for white light-emitting diodes, Appl. Phys. Lett., 2004, vol. 84, no. 10, pp. 1647–1649.

    CAS  Google Scholar 

  147. Jia, D. and Hunter, D.N., Long persistent light emitting diode, J. Appl. Phys., 2006, vol. 100, no. 11, p. 113125.

    Google Scholar 

  148. Do, Y.R., Ko, K.Y., Na, S.H., and Huh, Y.D., Luminescence properties of potential Sr1 − x CaxGa2S4:Eu green- and greenish-yellow-emitting phosphors for white LED, J. Electrochem. Soc., 2006, vol. 153, no. 7, pp. H142–H146.

    CAS  Google Scholar 

  149. Xie, R.-J., Hirosaki, N., Mitomo, M., et al., Photoluminescence of cerium-doped α-SiAlON materials, J. Am. Ceram. Soc., 2004, vol. 87, pp. 1368–1370.

    CAS  Google Scholar 

  150. Hirosaki, N., Xie, R.-J., Kimoto, K., Sekiguchi, Y., Suehiro, T., and Mitomo, M., Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes, Appl. Phys. Lett., 2005, vol. 86, p. 211905.

    Google Scholar 

  151. Xie, R.-J., Hirosaki, N., Mitomo, M., Takahashi, K., and Sakuma, K., Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors, Appl. Phys. Lett., 2006, vol. 88, p. 101104.

    Google Scholar 

  152. Xie, R.-J., Hirosaki, N., Mitomo, M., Sakuma, K., and Kimura, N., Wavelength-tunable and thermally stable Li-α-SiAlON:Eu2+ oxynitride phosphors for white light-emitting diodes, Appl. Phys. Lett., 2006, vol. 89, p. 241103.

    Google Scholar 

  153. Van Krevel, J.W.H., Hintzen, H.T., and Metselaar, R., Long wavelength Ce3+ emission in Y-Si-O-N materials, J. Alloys Compd., 1998, vol. 268, pp. 272–277.

    Google Scholar 

  154. Van Krevel, J.W.H., Hintzen, H.T., and Metselaar, R., On the Ce3+ luminescence in the melilite-type oxide nitride compound Y2Si3 − x AlxO3 + x N4 − x , Mater. Res. Bull., 2000, vol. 35, p. 747–754.

    Google Scholar 

  155. Van Krevel, J.W.H., van Rutten, J.W.T., Mandal, H., Hintzen, H.T., and Metselaar, R., Luminescence properties of terbium-, cerium-, or europium-doped α-SiAlON materials, J. Solid State Chem., 2002, vol. 165, no. 1, pp. 19–24.

    Google Scholar 

  156. Lozykowski, H.J., Jadwisienczak, W.M., Bensaoula, A., and Monteiro, O., Luminescence and excitation mechanism of Pr, Eu, Tb and Tm ions implanted into AlN, Microelectr. J., 2005, vol. 36, pp. 453–455.

    CAS  Google Scholar 

  157. Lozykowski, H.J. and Jadwisienczak, W.M., Thermal quenching of luminescence and isovalent trap model for rare-earth-ion-doped AlN, Phys. Status Solidi B, 2007, vol. 244., no. 6, pp. 2109–2126.

    Google Scholar 

  158. Ribeiro, C.T.M., Alvarez, F., and Zanatta, A.R., Red and green light emission from samarium-doped amorphous aluminum nitride films, Adv. Mater., 2002, vol. 14, no. 16, pp. 1154–1157.

    CAS  Google Scholar 

  159. Maqbool, M., and Ali, T., Intense red catho- and photoluminescence from 200 nm thick samarium doped amorphous AlN thin films, Nanoscale Res. Lett, 2009, vol. 4, pp. 748–752.

    CAS  Google Scholar 

  160. Weingärtner, R., Erlenbach, O., Winnacker, A., Welte, A., Brauer, I., Mendel, H., Strunk, H.P., Ribeiro, C.T.M., and Zanatta, A.R., Thermal activation, cathodo- and photoluminescence measurements of rare earth doped (Tm, Tb, Dy, Eu, Sm, Yb) amorphous/nanocrystalline AlN thin films prepared by reactive rf-sputtering, Opt. Mater., 2006, vol. 28, pp. 790–793.

    Google Scholar 

  161. Zhang, Zh., ten Kate, O.M., Delsing, A., van der Kolk, E., Notten, P.H.L., Dorenbos, P., Zhaoc, J., and Hintzen, H.T., Photoluminescence properties and energy level locations of RE3+ (RE = Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors, J. Mater. Chem., 2012, vol. 22, no. 19, pp. 9813–9820.

    CAS  Google Scholar 

  162. Yin, L.J., Zhu, Q.Q., Yu, W., Hao, L.Y., Xu, X., Hu, F.C., and Lee, M.H., Europium location in the AlN:Eu green phosphor prepared by a gas-reduction-nitridation route, J. Appl. Phys., 2012, vol. 111, no. 5, p. 053534.

    Google Scholar 

  163. Xie, R.J., Mitomo, M., Uheda, K., Xu., F.F., and Akimune, Y., Preparation and luminescence spectra of calcium- and rare-earth (R = Eu, Tb, and Pr)-codoped α-sialon ceramics, J. Am. Ceram. Soc., 2002, vol. 85, pp. 1229–1234.

    CAS  Google Scholar 

  164. Xie, R.J., Hirosaki, N., Mitomo, M., Uheda, K., Suehiro, T., Xu, X., Yamamoto, Y., and Sekiguchi, T., Optical properties of Eu2+ in α-SiAlON, J. Phys. Chem. B, 2004, vol. 108, pp. 12027–12034.

    CAS  Google Scholar 

  165. Li, Y.Q., van Steen, J.E.J., van Krevel, J.W.H., Botty, G., Delsing, A.C.A., DiSalvo, F.J., de With, G., Hintzen, H.T., Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca,Sr,Ba) led conversion phosphors, J. Alloys Compd., 2006, vol. 417, pp. 273–279.

    CAS  Google Scholar 

  166. Li, Y.Q., de With, G., and Hintzen, H.T., The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8:Eu2+ led conversion phosphor, J. Solid State Chem., 2008, vol. 181, pp. 515–524.

    CAS  Google Scholar 

  167. Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., and Yamamoto, H., Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes sensors and displays: principles, materials, and processing, Electrochem. Solid-State Lett., 2006, vol. 9, no. 4, pp. H22–H25.

    CAS  Google Scholar 

  168. Uheda, K., Hirosaki, N., Yamamoto, Y., and Yamamoto, H., Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode, Phys. Status Solidi A, 2006, vol. 203, no. 11, pp. 2712–2717.

    CAS  Google Scholar 

  169. Watanabe, H., Yamane, H., and Kijima, N., Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3, J. Solid State Chem., 2008, vol. 182, pp. 1848–1852.

    Google Scholar 

  170. Vetter, U., Zenneck, J., and Hofsäss, H., Intense ultraviolet cathodoluminescence at 318 nm from Gd3+-doped AlN, Appl. Phys. Lett., 2003, vol. 83, pp. 2145–2147.

    CAS  Google Scholar 

  171. Li, Y.Q., Hirosaki, N., Xie., R.J., Takeka, T., and Mitomo, M., Crystal, electronic structures and photoluminescence properties of rare-earth doped LiSi2N3, J. Solid State Chem., 2009, vol. 182, pp. 301–311.

    CAS  Google Scholar 

  172. Aldabergenova, S.B., Frank, G., Strunk, H.P., Maqbool, M., Richardson, H.H., and Kordesch, M.E., Structure changes of AlN:Ho films with annealing and enhancement of the Ho3+ emission, J. Non-Cryst. Solids, 2006, vol. 352, pp. 1290–1293.

    CAS  Google Scholar 

  173. Oliveira, J.C., Cavaleiro, A., Vieira, M.T., Bigot, L., Garapon, C., Mugnier, J., and Jacquier, B., The influence of erbium doping of Al-N sputtered coatings on their optical properties, Thin Solid Films, 2004, vol. 446, pp. 264–270.

    CAS  Google Scholar 

  174. Brien, V., Miska, P., Rinnert, H., Genève, D., Pigeat, P., Structural, chemical and optical characterizations of nanocrystallized AlN:Er thin films prepared by r.f. magnetron sputtering, Mater. Sci. Engin. B, 2008, vol. 146, pp. 200–203.

    CAS  Google Scholar 

  175. Dimitrova, V.I., Van Patten, P.G., Richardson, H., and Kordesch, M.E., Photo-, cathodo-, and electroluminescence studies of sputter deposited AlN:Er thin films, Appl. Surf. Sci., 2001, vol. 175–176, pp. 480–483.

    Google Scholar 

  176. Gong, Y., Yerci, S., Li, R., Negro, L.D., and Vučković, J., Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures, Opt. Express, 2009, vol. 17, no. 23, pp. 20642–20650.

    CAS  Google Scholar 

  177. Mallet, J.W., XIII. — On aluminum nitride, and the action of metallic aluminum upon sodium carbonate at high temperatures J. Chem. Soc., 1876, vol. 30, p. 349.

    Google Scholar 

  178. Berger, L.I., Semiconductor Materials, Florida: CRC Press, 1997, pp. 123–124.

    Google Scholar 

  179. Wilson, R.G., Schwartz, R.N., Abernathy, C.R., Pearton, S.J., Newman, N., Rubin, M., and Zavada, T.Fu., 1.54-μm photoluminescence from Erimplanted GaN and AlN, Appl. Phys. Lett., 1994, vol. 65, pp. 992–994.

    CAS  Google Scholar 

  180. Wu, X., Hömmerich, U., MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Schwartz, R.N., and Zavada, J.M., Photoluminescence study of Erdoped AlN, J.-Lumin., 1997, vols. 72–74, pp. 284–286.

    Google Scholar 

  181. Yu, F., Yang, J., Delsing, A.(C.A.), Hintzen, B.(H.T.), Preparation, characterization and luminescence properties of porous Si3N4 ceramics with Eu2O3 as sintering additive, J. Lumin., 2010, vol. 130, pp. 2298–2304.

    CAS  Google Scholar 

  182. Warga, J., Li, R., Basu, S.N., and Negro, L.D., Erbium-doped silicon nanocrystals in silicon/silicon nitride superlattice structures: light emission and energy transfer, Physica E, 2009, vol. 41, pp. 1040–1043.

    CAS  Google Scholar 

  183. Ueno, K., Gas pressured sintered silicon nitride containing praseodymium oxide as sintering aid, Int. J. High. Tech. Ceram., 1987, vol. 3, no. 1, p. 90.

    Google Scholar 

  184. Schlieper, T., Miliusand, W., and Schnick, W.Z., Nitrido-silicate. II [1]. Hochtemperatur-synthesen und kristallstrukturen von Sr2Si5N8 und Ba2Si5N8, Anorg. Allg. Chem., 1995, vol. 621, no. 8, pp. 1380–1384.

    CAS  Google Scholar 

  185. Xie, R.J., Hirosaki, N., Suehiro, T., Xu, F.F., and Mitomo, M., A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white lightemitting diodes, Chem. Mater., 2006, vol. 18, no. 23, pp. 5578–5583.

    CAS  Google Scholar 

  186. Piao, X.Q., Horikawa, T., Hanzawa, H., and Machida, K.I., Photoluminescence properties of Ca2Si5N8:Eu2+ nitride phosphor prepared by carbothermal reduction and nitridation method, Chem. Lett., 2006, vol. 35, pp. 334–335.

    CAS  Google Scholar 

  187. Piao, X.Q., Horikawa, T., Hanzawa, H., and Machida, K.I., Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination, Appl. Phys. Lett., 2006, vol. 88, p. 161908.

    Google Scholar 

  188. Chen, C., Chen, W., Rainwater, B., Liu, L., Zhang, H., Liu, Y., Guo, X., Zhou, J., and Xie, E., M2Si5N8:Eu2+-based (M = Ca, Sr) red-emitting phosphors fabricated by nitrate reduction process, Opt. Mater., 2011, vol. 33, p. 1585.

    CAS  Google Scholar 

  189. Li, Y.Q., de With, G., and Hintzen, H.T., Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials, J. Lumin., 2006, vol. 116, pp. 107–116.

    CAS  Google Scholar 

  190. Piao, X.Q., Machida, K.I., Horikawa, T., Hanzawa, H., Shimomura, Y., and Kijima, N., Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties, Chem. Mater., 2007, vol. 19, pp. 4592–4599.

    CAS  Google Scholar 

  191. Blasse, G. On the nature of Eu2+ luminescence, Phys. Status Solidi B, 1973, vol. 55, no. 2, K131–K134.

    CAS  Google Scholar 

  192. Blasse, G., Energy transfer between inequivalent Eu2+ ions, J. Solid. State Chem., 1986, vol. 62, no. 2, pp. 207–211.

    CAS  Google Scholar 

  193. Sakuma, K., Hirosaki, N., and Xie, R.-J., Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-α-sialon ceramic phosphors, J. Lumin., 2007, vol. 126, pp. 843–852.

    CAS  Google Scholar 

  194. Li, Y.Q., Hirosaki, N., Xie., R.J., Takeda, T., and Mitomo, M., Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs, Chem. Mater., 2008, vol. 20, p. 6704–6717.

    CAS  Google Scholar 

  195. Cheng, J.P., Agrawal, D., and Roy, R., Microwave synthesis of aluminum oxynitride (ALON), J. Mater. Sci. Lett., 1999, vol. 18, no. 24, pp. 1989–1990.

    CAS  Google Scholar 

  196. Zheng, J. and Forslund, B., Carbothermal synthesis of aluminium oxynitride (ALON) powder: influence of starting materials and synthesis parameters, J. Eur. Ceram. Soc., 1995, vol. 15, pp. 1087–1110.

    CAS  Google Scholar 

  197. Kikkawa, S., Hatta, N., and Takedaz, T., Preparation of aluminum oxynitride by nitridation of a precursor derived from aluminum-glycine gel and the effects of the presence of europium, J. Am. Ceram. Soc., 2008, vol. 91, pp. 924–928.

    CAS  Google Scholar 

  198. Yin, L.J. and Xu, X., Synthesis and photoluminescence of Eu2+-Mg2+ co-doped γ-AlON phosphors, Mater. Lett., 2009, vol. 63, pp. 1511–1513.

    CAS  Google Scholar 

  199. Deng, L., Lei, J., Shi, Y., Lin, T., Ren, Y., and Xie, J., Photoluminescence of Tb3+/Ce3+ co-doped aluminum oxynitride powders, Mater. Lett., 2011, vol. 65, pp. 769–771.

    CAS  Google Scholar 

  200. Schnick, W., Nitridosilicates, oxonitridosilicates (sions), and oxonitridoaluminosilicates (sialons): New materials with promising properties Int. J. Inorg. Mater., 2001, vol. 3, pp. 1267–1272.

    CAS  Google Scholar 

  201. Bachmann, V., Jüstel, T., Meijerink, A., Ronda, C., and Schmidt, P.J., Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions, J. Lumin, 2006, vol. 121, pp. 441–449.

    CAS  Google Scholar 

  202. Fei, Q.-N., Liu, Y.-H., Gu, T.-C., and Wang, D.-J., Color improvement of white-light through Mnenhancing yellow-green emission of SrSi2O2N2:Eu phosphor for white light emitting diodes, J. Lumin., 2011, vol. 131, pp. 960–964.

    CAS  Google Scholar 

  203. Fu, R., Agathopoulos, S., Song, X., Zhao, X., He, H., and Yu, X., Influence of energy transfer from Ce3+ to Eu2+ on luminescence properties of CaSi2O2N2:Ce3+, Eu2+ phosphors, Opt. Mater., 2010, vol. 33, pp. 99–102.

    Google Scholar 

  204. Gu, Y., Zhang, Q., Li, Y., Wang, H., and Xie, R.-J., Enhanced emission from CaSi2O2N2:Eu2+ phosphors by doping with Y3+ ions, Mater. Lett, 2009, vol. 63, pp. 1448–1450.

    CAS  Google Scholar 

  205. Ju, H., Su, X., Wang, B., Deng, D., Zhao, S., and Xu, S., Luminescent properties of SrSi2N2O2:Ce3+,Tb3+ — a potential phosphor for white light emitting diodes, J. Rare Earths, 2012, vol. 30, pp. 97–99.

    CAS  Google Scholar 

  206. Oyama, Y. and Kamigaito, O., Solid solubility of some oxides in Si3N4, Jpn. J. Appl. Phys., 1971, vol. 10, p. 1637.

    CAS  Google Scholar 

  207. Oyama, Y., Solid Solution in the Ternary System, Si3N4-AlN-Al2O3 Jpn. J. Appl. Phys., 1972, vol. 11, pp. 760–761.

    CAS  Google Scholar 

  208. Jack, K.H. and Wilson, W.I., Ceramics based on the Si-Al-O-N and related systems, Nat. Phys. Sci., 1972, vol. 238, pp. 28–29.

    Google Scholar 

  209. Jack, K.H., Sialons and related nitrogen ceramics, J. Mater. Sci., 1976, vol. 11, no. 6, pp. 1135–1158.

    CAS  Google Scholar 

  210. Lauterbach, L. and Schnick, W., Synthese. Kristallstruktur und Eigenschaften eines neuen Sialons-SrSiAl2O3N2, Z. Anorg. Allg. Chem., 1998, vol. 624, no. 7, pp. 1154–1158.

    CAS  Google Scholar 

  211. Schnick, W., Huppertz, H., and Lauterbach, R., High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces, J. Mater. Chem., 1999, vol. 9, pp. 289–296.

    CAS  Google Scholar 

  212. Shen, Z., Grins, J., Esmaeilzadeh, S., and Ehrenberg, H., Preparation and crystal structure of a new Sr containing sialon phase Sr2AlxSi12 − x N16 − x O2 + x (x ≈ 2), J. Mater. Chem, 1999, vol. 9, pp. 1019–1022.

    CAS  Google Scholar 

  213. Li, Y.Q., Hirosaki, N., Xie, R.-J., and Mitomo, M., Crystal, electronic and luminescence properties of Eu2+-doped Sr2Al2 − x Si1 + x O7 − x Nx, Sci. Technol. Adv. Mater., 2007, vol. 8, pp. 607–616.

    CAS  Google Scholar 

  214. Oeckler, O., Kechele, J.A., Koss, H., Schmidt, P.J., and Schnick W., Sr5Al5 + x Si21 − x N35 − x O2 + x :Eu2+ (x ≈ 0)—a novel green phosphor for white-light pcLEDs with disordered intergrowth structure, Chem. Eur. J., 2009, vol. 15, no. 21, pp. 5311–5319.

    CAS  Google Scholar 

  215. Fukuda, Y., Ishida, K., Mitsuishi, I., and Nunoue, S., Luminescence properties of Eu2+-doped green-emitting Sr-sialon phosphor and its application to white light-emitting diodes, Appl. Phys. Exp., 2009, vol. 2, no. 1, pp. 012401–012404.

    Google Scholar 

  216. Ishizawa, N., Kamoshita, M., Fukuda, K., Shioi, K., and Hirosaki, N., Sr3(Al3+x Si13−x )(N21−x O2+x ):Eu2+ (x ∼ 0): a monoclinic modification of Sr-sialon, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2010, vol. 66, p. 114.

    Google Scholar 

  217. Shioi, K., Michiue, Y., Hirosaki, N., Xie, R.-J., Takeda, T., Matsushita, Y., Tanaka, M., and Li, Y.Q., Synthesis and photoluminescence of a novel Sr-sialon:Eu2+ blue-green phosphor (Sr14Si68 − s Al6 + s OsN106 − s :Eu2+ (s ≈ 7)), J. Alloys Compd., 2011, vol. 509, pp. 332–337.

    CAS  Google Scholar 

  218. Yamane, H., Shimooka, S., and Uheda, K., Synthesis, crystal structure and photoluminescence of a new Eu-doped Sr containing sialon (Sr0.94Eu0.06)(Al0.3Si0.7)4(N0.8O0.2)6, J. Solid State Chem., 2012, vol. 190, pp. 264–270.

    CAS  Google Scholar 

  219. Kimura, N., Sakuma, K., Hirafune, S., Asano, K., Hirosaki, N., and Xie, R.J., Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode, Appl. Phys. Lett., 2007, vol. 90 no. 5, p. 051109.

    Google Scholar 

  220. Liu, T.C., Cheng, B.M., Hu, S.F., and Liu, R.S. Highly stable red oxynitride β -sialon:Pr3+ phosphor for light-emitting diodes, Chem. Mater., 2011, vol. 23, pp. 3698–3705.

    CAS  Google Scholar 

  221. Kargin, Yu. F., Akhmadullina, N.S., Lysenkov, A.S., Ashmarin, A.A., Ishchenko, A.V., Viktorov, L.V., Teslenko, O.S., Shul’gin, B.V., Spirina, A.V., Solomonov, V.I., and Solntsev, K.A., Synthesis and cathodoluminescence characteristics of europiumdoped Ca-sialons, Inorg. Mater., 2012, vol. 48, no. 8, pp. 827–831.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Kargin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargin, Y.F., Akhmadullina, N.S. & Solntsev, K.A. Ceramic materials and phosphors based on silicon nitride and sialon. Inorg Mater 50, 1325–1342 (2014). https://doi.org/10.1134/S0020168514130032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514130032

Keywords

Navigation