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Queueing Models for
Hospital Waiting Lists

D. J. WORTHINGTON

Department of Operational Research, University of Lancaster

Results of some recent research into queueing models are applied to the hospital waiting-list problem
to give some important insights into the likely implications of attempts to reduce waiting lists.
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INTRODUCTION

Waiting lists have been an unsatisfactory feature of the National Health Service (NHS) since its
inception in 1948. In part, they are a necessary evil in that they provide a pool of patients to ensure
that expensive health-service resources do not lie idle for the want of suitable patients. However,
waiting lists are usually much bigger than is necessary for this purpose.

Over the years, waiting lists have been the subject of much medical and political argument.
For instance, in commenting on a recent survey by the British Medical Association, the secretary,
Dr John Havard,' said, “The BMA survey shows a real increase in the length of time people with
ordinary illnesses have to wait before they gain access to treatment”. In reply, the Minister of
Health? said, “All figures available to me show the number of patients being treated is going up
and the number on waiting lists is going down. ... Waiting lists have been an upsetting feature
of the Health Service since 1948 and the Government has tried to tackle this problem since it came
to power”.

Waiting lists have also been the subject of a great deal of research. A review of much of this
work, including over 100 references, is provided by Hicks.’ One of the successes of this work has
been the introduction of ‘booked admission’ systems in some hospitals (see, for example, Hindle*
and Cox®). In these systems, patients are given appointments for admission to hospital when they
are first put on the waiting list. Although the waiting list still exists, the booking of admissions
leads to a more active management of the waiting list, and is more satisfactory from the patient’s
point of view. However, schemes of this sort are still in the minority, and many NHS hospitals
still have a waiting-list problem.

One of the major problems in waiting-list management is identified by Culyer.® In describing
rationing mechanisms in the NHS, he notes that “supply increases . . .”” {which reduce waiting lists
or waiting times) “...encourage general practitioners to refer more patients to hospital, and
hospital doctors to assign more people to the waiting list, until a more or less ‘conventional’ waiting
time is again reached”. We shall refer to this feature of waiting lists as feedback.

In this paper, we use some recent research on queueing models to investigate some of the
managemént implications of feedback in waiting lists. In particular, we examine some of the likely
implications of a recent report of The College of Health,” in which patients and their general
practitioners are encouraged to ‘shop around’ for short waiting lists. In order to facilitate this
process, the report provides hospital waiting-list indicators (HWIs), namely tables of long and short
waiting lists, by speciality and by health district.

THE QUEUEING MODEL

Modifying Kendall’s classification of queueing systems slightly, the queueing model used in this
paper is denoted by M(4,)/G/S. In this model, arrivals occur at random at a rate A, when there
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are g customers in the queue (this excludes customers in service), and 4, is a linearly decreasing
function of ¢,

. (N—g)x 0<g<N
viz. Ay = 0 g>N

Service times are sampled independently from any fixed probability distribution, and there are S
servers.

This model is very similar to the traditional machine-interference problem. However, the results
quoted here are much simpler than the nearest equivalent machine-interference results. They also
allow any distribution of service time, whereas machine-interference results require the distribution
to be of ‘phase-type’ (see, for example, Stewart and Marie®).

No exact results exist for the system M(4,)/G/S. However, research has shown that the
steady-state behaviour of the number of customers in the queue can be approximated quite
satisfactorily for most purposes by a Normal distribution with mean E(g) and variance V' (q),
as long as E(q) — 2.6\/ V(q) > 0. This condition ensures that the queue is hardly ever empty.
Furthermore, approximate expressions for E(g) and V' (q) depend only on N, S, a and the mean
E(t) and coefficient of variation CV(t) of service time, namely:

M

E@=N ~ s

Vig)= (1+CV@)). 2

S
2aE(t)

Expression (2) was derived from empirical results for CV(¢)* < 3.

APPLICATION TO THE HOSPITAL WAITING-LIST PROBLEM

A consultant’s waiting list can be considered as a queueing system as follows. The service is
hospital inpatient treatment. Beds can usually be considered as servers as they usually provide the
limit on number of people in service. The service time is essentially the patient’s length of stay in
the hospital bed, although a short turnover interval is needed to prepare the bed for the next
patient.

Arrivals occur either as referrals from a general practitioner to the consultant’s outpatient clinic
and then to the waiting list if the consultant decides the patient needs inpatient care; or as an
emergency case. As noted earlier, an important aspect of this arrival process is feedback, at both
the general-practitioner referral stage and the outpatient-clinic stage.

To model this arrival process, suppose the population nominally served by the consultant is P,
and the incidence rate (per person per unit time) of conditions suitable for inpatient treatment
by the consultant is I. The occurrence of potential patients would then be expected to be at
random, at a rate PI. We now consider two different models for the feedback mechanism.

In model 1, we assume that for each additional patient on the waiting list, a small proportion
p of potential patients are discouraged from joining the waiting list. Thus, if there are g people
on the waiting list, the arrival rate will be PI(1 — gp).

In model 2, we use the concept of anticipated time on the waiting list, defined as the expected
time required to serve the whole of the current waiting list. If the waiting-list size is g, this is simply
qE(t)/S. We then assume that for each additional unit of anticipated time on the waiting list, a
small proportion r of potential patients are discouraged from joining the waiting list. Thus, if there
are g people on the waiting list, the arrival rate will be

qE(r)
PI(I—— 3 r).

In both models 1 and 2, arrivals will continue to be at random, whatever the waiting-list size.
We are thus able to model waiting lists with feedback using the queueing model M (4,)/G /S, where
N =PI/p, o = p for model 1, and N = PIS/E(t)r, « = E(t)r/S for model 2.
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In fact, the arrival-rate function does not have to be precisely linear throughout the whole
range of possible g values. All that our results require is that 4, is linear for the range of g values
that usually occur. Hence an arrival-rate function of the form shown in Figure 1(b), where
feedback does not start to operate until the number on the waiting list is ¢,, can be modelled
using the arrival-rate function shown in Figure 1(a), as long as the waiting-list size is rarely less
than g,.

MODEL VALIDATION

In this section, the M(4,)/G/S model is considered for some real waiting lists. This discussion
is based on conversations with doctors and administrators, and data collected at the Royal
Berkshire Hospital in Reading. We shall consider in turn each of the three main assumptions of
the M(4,)/G/S model.

(i) The number of servers

The model assumes that beds are the main constraint on throughput, and hence can be con-
sidered as the servers. In a hospital where a different resource, say theatre time, provided the major
constraint a different formulation would be required.

The number of beds assigned to a consultant usually remains fixed. However, there may be
occasional temporary changes due to ward closures or bed-borrowing, and sometimes more
permanent planned changes in bed allocations.

(ii) Service-time distribution

The model assumes that service times are sampled independently from a fixed probability
distribution. As long as the types of patients and medical practice do not change, this will be a
reasonable first assumption. In fact, deviations from this assumption can occur. For instance,
Duncan and Curnow® have shown statistical evidence that, on some wards, the lengths of stay of
patients decrease as the number of beds in use on the ward increases. Also, because doctors often
select patients to give balanced operating theatre sessions, there can sometimes be correlations
between service times.

(iii) Arrival process

The model assumes that arrivals occur at random at a rate that decreases linearly with
waiting-list size. Data was collected over an 18-month period on nine waiting lists in order to
investigate this assumption. The data is summarized in Table 1.

If the model is true, the number of patients joining a waiting list during a month should follow
a Poisson distribution whose mean depends on the average number on the waiting list during
the month. As the latter information was not available, and as patients were at most added to the
waiting list once a week, the number on the waiting list at the start of the month was used as
a substitute.
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TABLE 1. Monthly numbers on waiting lists and joining waiting lists

Consultant 1

Consultant 2

Consultant 3

Male Female Children Female Children Female Children

On Join On Join On Join On Join On Join On Join On Join On Join On Join

Month WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL WL
1 133 25 97 12 63 20 104 19 72 11 85 27 30 12 22 6 86 47
2 139 14 99 4 62 9 109 21 75 14 84 20 25 15 23 10 77 35
3 143 32 87 7 55 11 123 35 78 24 75 41 30 12 25 5 81 27
4 157 26 82 15 49 11 141 22 97 16 83 55 24 10 24 9 60 34
5 170 24 82 8 43 24 144 27 96 22 100 37 23 14 16 8 44 40
6 175 16 78 13 56 23 158 21 102 21 99 37 23 12 15 16 53 43
7 177 22 79 8 64 20 164 28 107 12 89 22 28 11 25 5 78 46
8 188 18 76 15 60 18 165 24 107 12 75 25 27 14 19 7 92 72
9 188 13 78 9 62 29 169 18 106 16 68 38 31 15 13 6 124 50
10 178 21 76 12 77 17 168 12 107 17 70 27 29 6 10 3 134 26
11 193 14 81 15 76 28 161 21 107 13 62 49 25 10 13 12 120 42
12 195 22 88 9 79 24 159 23 112 19 82 28 26 16 15 12 122 44
13 200 25 86 11 77 16 166 25 119 26 83 36 30 11 17 5 129 37
14 215 18 87 22 65 20 169 20 123 13 83 30 23 6 12 9 114 26
15 199 11 90 14 62 11 168 14 120 8 77 22 21 10 10 10 100 25
16 184 23 87 19 56 17 165 19 112 12 71 29 19 10 17 6 70 13
17 179 12 92 7 57 16 160 14 106 10 66 33 13 7 11 3 41 19
18 184 22 99 16 73 20 162 11 111 13 96 24 17 11 13 6 59 21
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TABLE 2. Summary of GENSTAT analysis for nine waiting lists

Poisson Estimate Estimate 95% CI
model of of for
accepted? constant gradient gradient
Constant 1
Male Yes 38.9 —0.103 —
Female Yes 18.2 —0.073 (—0.308,0.162)
Children Yes 10.7 +0.124 (—0.095,0.343)
Constant 2
Male Yes 38.2 —0.109 —
Female Yes 20.2 —0.046 (—0.186, 0.094)
Children No — — —
Constant 3
Male Yes 5.7 +0.224 (—0.111,0.559)
Female Yes 8.5 —0.052 (—0.386, 0.160)
Children No — — —

GENSTAT was used to analyse the relationship between numbers joining and numbers on the
waiting list by fitting appropriate linear models. The results are summarized in Table 2. In two
out of the nine lists, the Poisson distribution was rejected at a 5% significance level. In both these
cases, the variability in numbers joining was much greater than could be explained by a Poisson
distribution. For each of the remaining seven lists, the constant and gradient of the linear
relationship were estimated.

For two of these seven lists, consultants 1 and 2 males, the statistical evidence indicated that
the arrival rate decreased as the waiting-list size increased, i.e. the null hypothesis of no decrease
was rejected at a 5% significance level (using a one-tailed test). However, for the remaining five
lists there was insufficient evidence to reject the null hypothesis. One possible reason for this failure
to reject is the power of the statistical test. In particular, if the 18 observations of waiting-list size
do not vary much, there is little chance of detecting a change in joining rate. In fact, the two waiting
lists that gave significant results were those with the largest variances of waiting-list size. For the
remaining five lists, the problem of obtaining significant results is highlighted in Table 2 by the
size of the 95% confidence intervals for the gradients.

Thus, what statistical evidence there is suggests that, for some real waiting lists, the observed
process is adequately described by the model. However, given the limitations of the data, other
possibilities also exist, e.g. feedback in which 4, is non-linear, or in which the response of arrival
rate lags behind changes in waiting-list size.

RESULTS

The formulae used here are deduced directly from the Normal approximation introduced earlier,
(see Appendix for details). The results are in terms of three important aspects of waiting-list
behaviour: the distributions of waiting-list size (gq), anticipated time on waiting list (w) and
acceptance rate (4,). Each distribution is summarized in terms of its mean and the range which
contains roughly the central 95% of the distribution.

(i) Waiting-list size (q)

" PIE()
Eq)=4" &)

S S
ED [1 — PIE(t)] Model 2

-
lI:l § :l Model 1

S1+Cv@)

s 172
E(q)i2[ SPIEQD) ] Model 1
95% Range (q)zﬁ )

SX(1+ CV@e)) ]~
E(q)iz[_——ZPIrE(t)z ] Model 2.

-
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(ii) Anticipated time on waiting list (w)

E
E(w)ﬁi]%gE—(t—) Models 1 and 2 ®)
E()
95% Range (w)ﬁT -(95% Range (¢)) Models 1 and 2. 6)
(iii) Acceptance rate (4,)
S
E(Aq)——m Models 1 and 2 @)
PI — PIp (95% Range (¢)) Model 1
95% Range (4,)== PIE ®)
"7 pr = PEEWD" (9504 Range (q)) Model 2.

S

Our main results are presented using examples that demonstrate the likely effects of certain
management actions. All these results are summarized in Table 3. In the first example, the
parameter values are chosen to correspond roughly to those of the male waiting lists of consultants
1 and 2.

Example 1—the present system

Service time has a mean of 1 week and a (coefficient of variation)? of 0.5. There are six beds
available. The incidence rate (PI) of potential patients is 10 per week; the proportional reduction
in arrival rate is p = 0.0025 for every extra person on the waiting list, or r = 0.015 for every extra
anticipated week on the waiting list. The performance of this system is summarized in row (i) of
Table 3, using the six performance measures introduced earlier. The last of these, 95% range (4,),
is expressed as a percentage of E(4,).

Thus both models predict a mean waiting-list size of 160, and actual size between 133.2 and 186.8
for 95% of the time. Similarly, anticipated time on the waiting list has a mean of 26.7 weeks, and
is between 22.2 and 31.1 weeks for 95% of the time. Finally, the average acceptance rate of patients
is 6.0 per week, and for 95% of the time the actual rate is within 11% of this. However, this does
indicate that, for 5% of the time, the acceptance rate differs by at least 11% from the mean, which
makes the state of the waiting list at the time of consultation of some importance in determining
whether or not the patient will be placed on the waiting list.

Example 2—a waiting list without feedback

One of the important effects of feedback is that it helps to control waiting-list size. This example
demonstrates how a waiting list would be expected to behave without feedback.

First, comparing with example 1, we note that with potential arrivals at a rate of 10 per week,
no feedback, and an average service rate of six per week, the waiting list would simply keep

TABLE 3. Waiting-list behaviour under various management actions

Anticipated time

on WL Acceptance rate
WL size (weeks) (per week)

System Model E(q) 95% range (g) E(w) 95% range (w) E(4) 95% range (4,)
(i) Present 1 and 2 160.0 (133.2,186.8) 26.7 (22.2,31.1) 6.0 (89%, 111%)
(ii) No feedback 160.0 (0.0, 560.0) 26.7 (0.0,93.3) 6.0 (100%, 100%)
(iii) 2 extra beds 1 80.0 (49.0,111.0) 10.0 (6.1,13.9) 8.0 (90%. 110%)
(iv) 2 extra beds 2 106.7 (70.9, 142.4) 13.3 (8.9,17.8) 8.0 (92%, 108%)
(v) 10% cut in E(2) 1 1333 (104.0, 162.7) 20.0 (15,6,24.4) 6.7 (89%, 111%)
(vi) 10% cut in E(t) 2 148.1 (117.2,179.1) 222 (17.6,26.9) 6.7 (90%, 110%)
(vii) Combining equal lists 1 160.0 (133.2,186.8) 13.3 (11.1, 15.6) 12.0 (89%, 111%)
(viii) Combining equal lists 2 320.0 (282.1,357.9) 26.7 (23.5,29.8) 12.0 (92%, 108%)
(ix) Combining unequal lists 1 120.0 (91.0, 149.0) 8.6 (6.5, 10.6) 14.0 (90%, 110%)
(x) Combining unequal lists 2 280.0 (235.7,324.3) 20.0 (16.8,23.2) 14.0 (93%, 107%)
(xi) Earlier feedback 1 80.0 (53.2,106.8) 13.3 (8.9,17.8) 6.0 (89%, 111%)
(xii) Earlier feedback 2 80.0 (53.2,106.8) 13.3 (8.9,17.8) 6.0 (89%, 111%)
(xiii) (1) —16.2% 1 and 2 113.5 (84.2,142.8) 18.9 (14.0,23.8) 6.0 (90%, 110%)
(xiv) (xi) +16.2% 1 and 2 113.5 (88.6,138.4) 18.9 (14.8,23.1) 6.0 (88%, 112%)
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growing. We must therefore assume that a constant proportion of patients are deterred, so that
the average arrival rate is less than six per week. It is then reasonable to model this system as
M |E, /6, where E, is chosen because it has (coefficient variation)? of 0.5.

Extrapolating from the tables of Hillier and Yu,' the system would need to have a traffic
intensity of about 0.995 to have a mean waiting-list size of 160, as in example 1. The performance
parameters shown in row (ii) are then derived from these tables. Although this system is desirable
in that it no longer has varying standards for joining the waiting list, unfortunately it also has high
variability of both waiting-list size and anticipated time on the waiting list.

Example 3—increasing the number of beds

One traditional response to long waiting lists has been to increase bed provision in the
expectation that this will clear the backlog. For instance, if two extra beds are provided in example
1, then in theory, in 80 weeks, they should be able to treat 160 patients, and hence reduce the
waiting list to zero. In practice this does not happen because of the reaction of the arrival rate to
shorter waiting lists. Rows (iii) and (iv) show the predicted effects of two extra beds for the two
feedback models. In both cases, the additional beds improve the service, but substantial waiting
lists and waiting times still remain.

Example 4—decreasing mean service-time

Decreasing mean service-time is also a possible method for eradicating waiting lists. Rows (v)
and (vi) show that both models predict that a 10% decrease in mean service-time would increase
mean acceptance-rate by 11% but would have very little effect on waiting-list size and waiting time.

Example 5—combining two equal lists

There are some benefits from combining two equal waiting lists, although the two models
produce very different results. For example, if each of the lists is as in example 1, then model 1
predicts that combined waiting-list size and anticipated waiting time would be halved—see row
(vii). Model 2, row (viii), on the other hand, shows benefits only as reduced variabilities in
acceptance rate and anticipated waiting time. In the context™of a significant reorganization of this
sort, model 2 is the more likely.

Example 6—combining two unequally resourced lists

This example highlights some of the likely implications of the College of Heath’ proposals
that general practitioners and their patients should ‘shop around’ for short waiting lists. Row (ix)
shows the effect of combining the lists in examples 1 and 3 [see rows (i) and (iii)] using model 1.
Row (x) combines the same two lists using model 2; this time compare with rows (i) and (iv).
Concentrating on model 2, which is more likely in this context, we see that a simple averaging of
waiting times is obtained. The combined acceptance-rate does not change, although as the two
identical catchment populations now share the same resources, they have equal acceptance-rates.

Examples so far have used arrival-rate functions of the form shown in Figure 1(a). As noted
earlier, our results can also be used for arrival-rate functions of the form shown in Figure 1(b).
For instance, row (i) also predicts the behaviour of a system with an arrival rate that stays constant
at 7.5 per week until the waiting-list length is 100, and then falls linearly according to model 1,
with p =0.0025. The model 2 equivalent is that arrival rate is constant at 7.5 per week until
anticipated waiting time is 16.7 weeks, and it then falls linearly with r = 0.015.

Arrival rates of the form in Figure 1(b) correspond to situations in which general practitioners
and consultants start to consider alternatives to inpatient care when waiting lists reach g,.

Example 7—introducing feedback earlier

Rows (xi) and (xii) predict the effects of an earlier reaction by general practitioners and/or
consultants to growing waiting lists. Here the arrival rate starts to be reduced when the waiting-list
length is 20, or the anticipated waiting time is 3.3 weeks. The values of p and r used are unchanged
from example 1. Comparing with row (i), we can see the same dramatic improvement in predicted
waiting-list behaviour for both models, at no cost to patients in terms of acceptance rates.
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Example 8—combining two differently managed lists

This final example considers further some of the College of Health” proposals. Here we consider
one area which has a waiting list in which feedback was introduced late, as in example 1, and a
second area which has a waiting list in which feedback was introduced earlier, as in example 7.
The above proposal will cause some of the workload from the first area to go to the second. If
the two areas do not change their waiting-list management policies, the two waiting lists will
eventually settle to equal lengths and equal anticipated waiting times, by which time the second
area will be doing 16.2% of the first area’s work. The behaviour of the two new waiting lists is
shown in rows (xiii) and (xiv). Although the two waiting lists are now almost identical in their
behaviour, the second area has suffered a substantial reduction in service. Its anticipated waiting
time has increased by 6.6 weeks, and more importantly, the acceptance rate from its own catchment
population has dropped by 16.2%.

CONCLUSIONS

We have estimated fairly precisely the implications of certain management actions for waiting
lists in which arrival rates decrease linearly as waiting-list size increases. Although some of the
precision of our results will be lost for waiting lists that have other sorts of feedback, we
nevertheless believe that a number of important conclusions can be drawn from the results and
examples presented here.

Feedback is an important factor in waiting-list management. Feedback makes it possible to
maintain a pool of patients for admission and at the same time avoid very long and unstable waiting
lists. However, it also means that traditional ‘solutions’ to long waiting lists rarely ‘solve’ the
problem (although they do improve throughput). A much more effective method for controlling
waiting lists would be to ‘tighten up’ the feedback mechanisms that already exist.

The College of Health proposals do not seem to be particularly well advised. On occasions, when
their effect is to combine two unequally resourced waiting lists, there will be some benefits.
However, when their effect is to combine two differently managed waiting lists, the outcome at best
will be unfair, and they will probably undermine what good management practices already exist.

APPENDIX
The queueing model M (4,)/G/S has arrival-rate function
Ay=(N—q) for 0<g<N.
Comparing this with the two formulations of the waiting-list problem gives
Model 1: N =1/p, o = Plp;
S - PIE(t)r
rEt) S

Substituting these values into the expressions (1) and (2) gives the following results.

Model 2: N =

Waiting -list size (q)

1 S
J; —W Model 1
E(q)=

S S?

——————— Model 2

FEG)  PIEGYr ¢

which gives expression (3) after minor rearrangement.

(S(1+ CV ()}
2PIpE(t)

S A+ Cv ()
2PIrE(t)?
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Now the central 95% of a Normal distribution is contained in the range E(q) + 2/¥(g), so
substituting in the above expression for ¥(¢) and minor rearrangement gives expression (4).

Anticipated time on waiting list (w)

We define this to be the time that a patient would spend on the waiting list if the average service
time of patients in front of him is equal to the average service time of all patients, and if patients
are treated in the order of joining the waiting list. The residual service times of patients already
in service, which will be relatively small, are ignored. Thus the anticipated waiting time (w) of a
customer who finds a waiting-list size of ¢ is given by

E(1)
w=qg——.
75

In order to calculate the precise distribution and statistics of w, the different values of w should
be weighted by the relative numbers of patients who have that value of w, which are given by the
4,8. However, quite a high degree of accuracy is achieved, and the expressions are much simpler
if we use

E(w)=anticipated waiting time if waiting-list size is E(q),
95% range (w)==range of anticipated waiting times associated with values of waiting-list size
in its 95% range.

Expressions (5) and (6) then follow immediately.

Acceptance rate (4,)

The acceptance rate is defined to be the rate at which patients are put onto the waiting list, so
that

acceptance rate = 4, when ¢ on waiting list.
To obtain E(4,), note that at steady-state,
mean acceptance-rate = mean service-rate.

As the waiting list is almost never empty,

mean service-rate =——.
E(2)

By definition, the.95% range (4,) is the range of arrival rates associated with the 95% range (¢).
But for any ¢, the associated arrival rate is

b= —q)o,

and substituting in the appropriate values of N and a gives expression (8).
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