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An integrated production inventory model is considered in this paper, for a flow shop type multipro-
duct batch production system, with a multifacility structure. Instantaneous production is allowed 
in each facility. The model aims to determine simultaneously the optimal manufacturing cycle 
for the multiple products and the corresponding optimal procurement policies for the raw material. 
The cycle concept of multiproduct batch processing is extended to multifacility system and is inte-
grated with the concept of production-inventory system for a single product, single facility system. 

INTRODUCTION 

GOYAL 1 DERIVED an integrated production inventory policy for the elementary case 
of a single product processed on a single facility. The model simultaneously determines 
the economic batch size for the product and economic order quantities for raw materials, 
that will minimise the total variable cost of the production inventory system. Such 
a policy takes into account the fact that raw materials are consumed only during the 
production time of the batch, and not uniformly as commonly assumed. This policy 
is more important in a situation where multiple products are processed on multifacility 
production systems on a batch basis. Although models have been proposed separately 
for production of multiple products in a cycle,2- 7 and for optimal lot sizes on multiple 
processors, s - tl these do not take into account the particular consumption pattern of 
raw materials in batch production. 

In this paper, an integrated production inventory model is developed for multiproduct 
multifacility production. In this way, optimal production cycle for products and corre-
sponding optimal procurement policies for raw materials are simultaneously determined. 
The objective is to minimise the total variable cost of production inventory system. 

THE MATHEMATICAL MODEL 

The mathematical model presented is based on the following assumptions: 
(1) A flow shop type production system is assumed, where all products are processed 

on the same facilities, in the same sequence, on a batch basis. The facility set up 
costs are not sequence dependent. 

(2) The facility production rates are assumed very high, so that instantaneous production 
results. This assumption is, however, not restrictiv~ and could be dropped, for in-
stance by the alternative consideration of goods transfer during processing. 

(3) Products are demanded at the final processing facility and all demands are known 
and uniform. 

(4) Raw materials are fed to the production system as required at any facility. 
(5) All the other cost factors pertaining to set ups, order processing and inventory carry-

ing are assumed known with certainty. 
The following notation is used: 

n number of products. 
A.i demand/year of product i. 
T Manufacturing cycle time of products, on the last processing facility m. 
m number of facilities. These are serially numbered from 1 to m. 
Aij Set up cost for product i on facility j. 
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hiJ = Vi} = Value added inventory cost per unit per year, for product i at facility j. 
v;J = Value added per unit for product i at facility j. 
I = Annual inventory carrying charges factor. 

kii A positive integer such that product i is processed on facility j once every 
m 

[1 kiq cycles. 

QiJ Optimal lot size of product i on facility j 

Raw material 1 of product i, facility j 
mii Number of raw materials. 
Aii1 Ordering cost per order. 
hii1 Inventory carrying cost per unit per year. 
xii1 Demand per year. 
kii1 A positive integer such that the raw material is ordered once every 

kiJl ( TI. kiq) cycles. 
q=j 

Qii1 Optimal order quantity. 

Costs 
C Total variable cost per year of the multistage multiproduct production-inventory 

system. 
Ci Total variable cost per year of the production inventory system of product i. 
Cii Total variable cost per year of the production inventory system of product i, 

facility j. 
Cii1 Total variable cost per year of the inventory system of raw material 1, of product 

i, facility j. 
Following Crowston et al.U we shall use the concept of echelon stock. Echelon stock 

is the number of units in the system which have passed through the facility i but 
have not as yet been sold. This concept allows consideration of value added inventory 
of a production facility and permits the inventory holding cost to be considered as 
a function of the facility concerned only. Also, our assumption of instantaneous produc-
tion guarantees schedule feasibility and our cycles will be repeatable in the long run 
sense. Similar analysis would hold for the case of finite production rates, with the feasi-
bility of goods transfer between stages, during batch processing. 

Crowston et a/. 11 have proved that for the single stage production system, the econo-
mic batch size of a given facility is an integral multiple of economic batch size of 
its successor facility. This fact permits consideration of only batch sizes that are integer 
multiples. With schedule feasibility guaranteed, the result clearly holds for each indivi-
dual member of the multiproduct family. 

The batch size Qim of the product i on the last facility is given by the formula 

We can now write 

In these formulae, all kii and kiJl are positive integers. Our problem is reduced to one 
of determining r:Pt' k0opt (i = 1, 2, ... , n; j = 1, 2, ... , m) and k0zopt (i = 1, 2, ... , n; 
j = 1, 2, ... , m; l = 1, 2, ... , mii) such that all k0opt and k0zopt are positive integers. 
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ANALYSIS OF VARIABLE COST 

The total variable cost per year of procuring raw material l of product i, facility j, is 

kul ( TI. kiq) xijlhijl T 
Aijl + _ ____,_,q'-=-"-j--'--------

( il. kiq) kijl T 2 
q=J 

Next, the total variable cost per year of the production inventory system of product i, 
facility j, is 

Cij = Variable production system cost + variable procurement system cost. 

( TI. kiq) Ai Thu m,·. 
A·· q=j ' 

cij = ( "' 'J) + 2 + 2:: cijl· TI k T l=l 
zq 

q=j 

We now write the total variable cost per year of the production inventory system of 
product i, as follows: 

+ LLCijl· 
j l 

Hence the total variable cost of the entire production-inventory system is 

The optimal production inventory policies will be obtained by first setting to zero 
partial derivatives of C with reference to T, kiq and kijl respectively. 

. ac ac = 0 ac = 0 
I.e. 8T = O 8kiq 8kijl 

yielding 
1/2 

T* = 
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p. = ~ 
'J T 

[ 

j A· j m,j A. ] 2 '\' <s '\' '\' <sl 
L. j=1 m + L. L. j-1 n 

s= 1 ( TI k;q) ( TI k;q) s= 1 I= 1 ( TI k;q) ( n k;q) kisl 
q=s q=J+1 q=s q=J+1 

1/2 

INTEGRALITY OF k'!j, k'!j1 

The values of k'!j and k'!j1 obtained above may not be integers because of the underlying 
continuity assumption. We examine below the question of integrality of k'!j and k01• 

The total variable cost per year of the production-inventory system which depends 
on kij is 

+ ± I ( ( m A;) + k,,,x,,, Th,{fr, k,,) ) . 
s=1 1=1 TI k· k· T 2 

'q <sl q=s 

Let C;j(kij), C;j(k'!j) and c;j{kij + 1) be the values of c;j at kij, k'!j and kij + 1, respectively. 
Let kij be the largest integer less than or equal to k'!j, so that we can write 
k0 = kij + (jij· 

We wish to derive conditions for rounding off k'!j to either kij or kij + 1. k'!j is rounded 
off to kij, if 

c;j(k;) < c;j(k;j + 1). 

Similarly, k'!j is rounded off to kij + i, if 

c;j{k;j) > c;j(kij + 1). 

Finally, k0 is rounded off to either kij or kij + 1 if 

c;p<;) = c;j(kij + 1). 

In the appendix, the conditions are derived in detail. 

The integrality of k'!j1 can be treated in an identical manner. We first let Cij1(kij1), 

Cij1(k'!j1) and Cij1(ku1 + 1) be the values of Cij1 at kijz, k'!j1 and (kij1 + 1), respectively. 
Next, we allow k'!j1 = k;jl + bijz, so that kij1 is the largest integer less than or equal 
to k'!j1• 

We round off k{j1 to kijz, if 

Round off k'!j1 to kij1 + 1, if 

cijz(l<;jl + 1) > cijl(k;jl). 

Round off k'!j1 to either kij1 or kij1 + 1, if 

Cij1(kij1) = Cij1(kij1 + 1). 
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If (jii < b;j, round off k;j to kii 

> b;j, round off k;j to ku + 1 

and if 

b;j, round off k;j to either ku or kij + 1, 

b;jl < b;jb round off k;j1 to kii1 

> b;j1, round off k;j1 to k;jl + 1 

b;j1, round off to either ku1 or kii1 + 1. 

SUGGESTED COMPUTATIONAL SCHEME 

The steps of the computational scheme, for determining the optimal prod uction-inven-
tory policy are stated below. 

1. Let all k;j and k;j1 be 1. 
2. Compute T* 
3. Compute k;j, round off k;j and compute k;j_ 1 . Round off k;j_ 1 . Perform this step 

for j = n, n - 1, ... , 2. 
4. Compute all k;j1• Round off all k;j1• 

5. Use the rounded off values of all k;j and k;j1 and go to step 2. 
6. Repeat 2-5 till convergence is obtained. 

7. Compute Q;j = ( TI. k;~ opt) Jc;T, 
q~; 

i = 1, 2, ... , n 
j = 1, 2, ... , m 

i = 1, 2, ... , n 

j = 1, 2, ... , m 

l = 1, 2, ... , m;j 

WORKED EXAMPLE 

Number of products n = 2. 
Number of production facilities m = 2. 
Number of raw materials of product i, at facility j, mu = 1, (i = 1,2; j = 1, 2). 

Demand/year of product: Jc 1 = 40000 units Jc 2 = 80000 units. 
Inventory carrying cost/ 
unit/year of product: 
Set up cost of product: 
Demand/year of raw materials: 

Inventory carrying cost of 
raw material/unit/year: 
Ordering cost of raw materials: 

Solution 

h11 = h1 z = $2; h21 = hzz = $0.2. 
A11 = A 12 = $100; A21 = Azz = $80. 

x 111 = x 121 = 40000 units. 
x 211 = x 221 = 80000 units. 
hll1 = $0.3 h121 = $0.4 
hz11 = $0.1 h2 z1 = $0.2. 

A111 = $80, A 121 = $30 
A 211 = $60, A 221 = $40. 

The solution to the problem, using the computational scheme is obtained in three 
iterations. The values of all k;j's and k;jz's obtained at different iterations are given 
in table 1. 

In applying the scheme, we first set all k;j and all k;j1 equal to unity, and determine 
manufacturing cycle time Tt = 0.0648 years. Using this value, all k;j's and k;jz's are 
recomputed. Substitution of the latter into expression for T*, yields new value of manu-
facturing cycle time, namely, T~ = 0.0581 years. All the values of k;j's and k;jz's converge 
at third iteration; giving the optimal value of manufacturing cycle time T equal to 

359 



Journal of the Operational Research Society Vol. 30, No. 4 

TABLE 1. RESULTS OF COMPUTATIONAL SCHEME 

Iteration 1 krJ = 1 i= 
j= 

1,2 
krJz = 1,2 

Iteration 2 

Iteration 3 
(convergence) 

klj = 

klj = 

1 

1 

i= 1,2 
j= 1,2 

i= 1,2 
i = 1,2 

Q1 1 = Q12 = 40000 x 0.0581 = 2324 units. 
Q21 = Q22 = 80000 x 0.0581 = 4648 units. 
Q111 = 2 x 2324 units. 
Q121 = 1 x 2324 = 2324 units. 
Q211 = 2 x 4648 = 9296 units. 
Q221 = 1 x 4648 = 4648 units. 

kj21 

kill 

kj21 
kj,, 

i= 1,2 
1 j= 1,2 

I= 1 

= k'ht = 1 

= k'!ll =2 

= k'!zt = 1 

= k~, l = 2 

T! = 0.0648 

T'! = 0.0581 

T! = 0.0581 

0.0581 years. Application of step 7 of the scheme, results in optimal values of lot sizes 
for products and optimal order quantities for raw materials. For example, optimal lot 
size for product 1 at facility 1, Q 11 = 1 x 40000 x 0.0581 = 2324 units; and optimal 
order quantity of raw material 1, of product 1 at facility 1, Q111 = 2 x 2324 = 4648 
units. Other results are given in table 1. 

CONCLUDING REMARKS 

An integrated production inventory model is developed in this paper, for a flow shop 
type multiproduct batch production system comprising of multiple facilities in series. 
The model simultaneously determines the optimal manufacturing cycle for the multiple 
products and the corresponding optimal procurement policies. The model assumes in-
stantaneous production and no capacity bottleneck. Production rates and capacities 
are however important parameters of the production system and their implications to 
the production-inventory policy need further examination. Also, sensitivity analysis 
should help reveal the extent of gain accruing from the integrated model compared 
to the use of simple EOQ and EBQ models. Likewise, in situations where joint replenish-
rpent of raw materials from suppliers, is feasible, further economies could result from 
such a policy. Minor modification of the theoretical treatment presented in this paper 
should enable consideration of the possibility of joint replenishment. 
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APPENDIX 

Derivation of conditions for rounding off kt} 

rhe part of the total cost which depends upon kij is given by 

j nljj 

+ 2: 2: 
s=1 1=1 
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From the above, we can write expressions for Cij(kij), Cij(k;j + 1) and Cij(k(j), g1ven 
below: 

Cij(kij) = [st1 (Fs1 + Fs3)] :ij + [st (Fs2 + Fs4)}<;j 

Cij(k0) = [ I (Fs1 + Fs3)] 1
1:1'. + [ I (Fs2 + Fs4)] k;j 

s=1 <,J s=1 

In the above expressions, F81 , F82 , F83 and Fs4 are the following expressions: 

( j-1 ) ( m ) TI k;q TI k;q A; This 
F _ q=s q=J+1 
s2- 2 , 

m;j A 
F = "' isl 

s3 f..., (j-1 ) ( m ) 1 = 1 TI k;q TI kiq kisl T 
q=s q=J+1 

Now k(j is rounded off to k;j, 

i.e. 

Substituting from the expressions developed above, this condition reduces to 

i.e. 

Le. 

Le. 

Clearly 

j 

I (Fs1 + Fs3) 
kij(kij + 1) > _s ~~l ___ _ 

I (Fs2 + Fs4) 
s=1 

(jij < (- kij + jk;~ + k;J. 
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Let 

Therefore, 

and 

Similarly, 

c;j(k;) = c;j(ku + 1) implies that (jij = 6t). 

The conditions for rounding off k1j1 can be derived in a similar manner. 
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