Skip to main content
Log in

Bacillus thuringiensis: applications in agriculture and insect resistance management. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) is a sporulating, Gram-positive facultative-aerobic soil bacterium. Its principal characteristic is the synthesis, during sporulation, of a crystalline inclusion containing proteins known as δ-endotoxins or Cry proteins. These proteins have insecticidal properties. The considerable diversity of these toxins, their efficacy and their relatively cheap production have made Bt the most widely used biopesticide in the world. It is used in the fight against many agricultural crop pests — mostly lepidopteran and coleopteran larvae — notably in the creation of new plant varieties expressing Bt cry genes. For human health, Bt can be used for the effective control of populations of several dipteran disease vectors. The aim of this review is to provide an overview of the use of Bt for crop protection and to deal with the problem of the emergence of insects resistant to this biopesticide. We will begin by presenting various aspects of the biology of this entomopathogenic micro-organism, focusing on the diversity and mode of action of the insecticidal toxins it produces. We will then present several examples of utilization of commercially available Bt products used as sprays or as transgenic crops. Finally, we will describe the principal strategy for the use of Bt transgenic plants, developed so as to prevent or delay the emergence of resistance in target insect populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alstad D.N., Andow D.A. (1995) Managing the Evolution of Insect Resistance to Transgenic Plants, Science 268, 1894–1896.

    Article  PubMed  CAS  Google Scholar 

  • Alves A.P., Spencer T.A., Tabashnik B.E., Siegfried B.D. (2006) Inheritance of resistance to the CrylAb Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae), J. Econ. Entomol. 99, 494–501.

    Article  PubMed  CAS  Google Scholar 

  • Angus T.A. (1954) A Bacterial toxin paralysing silkworm larvae, Nature 173, 54–56.

    Article  Google Scholar 

  • Becker N. (2000) Bacterial control of vector-mosquitoes and black flies, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 383–398.

    Google Scholar 

  • Berliner E. (1915) Über die Schlaffsucht der Mehlmottenraupe (Ephestia kühniella Zell.) und ihren Erreger Bacillus thuringiensis, n.sp., Z. Angewandte Entomologie 2, 29–56.

    Article  Google Scholar 

  • Bourguet D., Génissel A., Raymond M. (2000) Insecticide resistance and dominance levels J. Econ. Entomol. 93, 1588–1595.

    Article  PubMed  CAS  Google Scholar 

  • Bourguet D., Chaufaux J., Seguin M., Buisson C., Hinton L., Stodola T.J., Porter P., Cronholm G., Buschman L.L., Andow D.A. (2003) Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis, Theor. Appl. Genet. 106, 1225–1233.

    PubMed  CAS  Google Scholar 

  • Bravo A., Gomez I., Conde J., Munoz-Garay C., Sanchez J., Miranda R., Zhuang M., Gill S.S., Soberon M. (2004) Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-formingtoxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochim. Biophys. Acta 1667, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Calamari D., Yameogo L., Hougard J.-M., Levêque C. (1998) Environmental assessment of larvicide use in the onchocerciasis programme, Parasitol. Today 14, 485–489.

    Article  PubMed  CAS  Google Scholar 

  • Chaufaux J., Seguin M., Swanson J.J., Bourguet D., Siegfried B.D. (2001) Chronic exposure of the European corn borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis toxin, J. Econ. Entomol. 94, 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2005) Bacillus thuringiensis Toxin Nomenclature (Homepage), http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/.

  • Dalecky A., Ponsard S., Bailey R.I., Pélissier C., Bourguet D. (2006) Resistance evolution to Bt crops: predispersal mating of European corn borers, PLoS Biology 4, 1048–1057.

    Article  CAS  Google Scholar 

  • De la Riva G., Adang M.J. (1996) Expression of Bacillus thuringiensis δ-endotoxin genes in transgenic plants, Biotecnologia Aplicada 13, 251–260.

    Google Scholar 

  • Ellis R.T., Stockhoff B.A., Stamp L., Schnepf H.E., Schwab G.E., Knuth M., Russell J., Cardineau G.A., Narva K.E. (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte, Appl. Environ. Microbiol. 68, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. (USA) 93, 5389–5394.

    Article  CAS  Google Scholar 

  • Farinés G.P., de la Poza M., Hernández-Crespo P., Ortego F., Castañera P. (2004) Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain, Entomol. Exp. Appl. 110, 23–30.

    Article  Google Scholar 

  • Higginson D.M., Morin S., Nyboer M.E., Biggs R.W., Tabashnik B.E., Carrière Y. (2005) Evolutionary trade-offs of insect resistance to Bacillus thuringiensis crops: fitness cost affecting paternity, Evolution, 59, 915–920.

    PubMed  Google Scholar 

  • Huang D.-F., Zhang J., Song F.-P., Lang Z.-H. (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China, J. Invert. Pathol. 95, 175–180.

    Article  Google Scholar 

  • Ishiwata S. (1901) On a kind of severe flacherie (sotto disease), Dainihon Sanshi Kaiho 114, 1–5.

    Google Scholar 

  • James C. (2006) Preview, global status of commercialized transgenic crops, ISAAA Briefs No. 35 (http://www.isaaa.org).

  • Knight P.J., Crickmore N., Ellar D.J. (1994) The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N, Mol. Microbiol. 11, 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Knowles B.H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins, Adv. Insect Physiol. 24, 273–308.

    Google Scholar 

  • Koziel G.M., Beland G.L., Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Maddox D., McPherson K., Heghji M., Merlin E., Rhodes R., Warren G., Wright M., Evola S. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Biotechnology 11, 194–200.

    Article  CAS  Google Scholar 

  • Levêque C., Fairhust C.P., Abbau K., Pangy D., Curtis M.S., Traoré K. (1988) Onchocerciasis control programme in West Africa: ten years of monitoring fish populations, Chemosphere, 17, 421–440.

    Article  Google Scholar 

  • Li J., Carroll J., Ellar D.J. (1991) Crystal structure of insecticidal deltaendotoxin from Bacillus thuringiensis at 2.5 A resolution, Nature 353, 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Maagd R.A. de, Weemen-Hendriks M., Stiekema W., Bosch D. (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids, Appl. Environ. Microbiol. 66, 1559–1563.

    Article  PubMed  Google Scholar 

  • Maagd R.A. de, Bravo A., Berry C., Crickmore N., Schnepf H.E. (2003) Structure, diversity, and evolution of protein toxins from sporeforming entomopathogenic bacteria, Annu. Rev. Genet. 37, 409–33.

    Article  PubMed  Google Scholar 

  • Marvier M., McCreedy C., Regetz J., Kareiva P. (2007) Meta-analysis of effects of Bt cotton and maize on nontarget invertebrates, Science 316, 1475–1477.

    Article  PubMed  CAS  Google Scholar 

  • McGaughey W.H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis, Science 229, 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Perlak F.J., Fuchs R.L., Dean D.A., McPherson S.L., Fishhoff D.A. (1991) Modification of the coding sequences enhances plant expression of insect control protein genes, Proc. Natl. Acad. Sci. (USA) 88, 3324–3328.

    Article  CAS  Google Scholar 

  • Perlak F.J., Stone T.B., Muskopf Y.M., Petersen L.J., Parker J.B., Mc Pherson S.A., Wyman J., Love S., Reed G., Biever D. (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles, Plant. Mol. Biol. 22, 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Pigott C., Ellar D.J. (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity, Microbiol. Mol. Biol. Rev. 71, 255–281.

    Article  PubMed  CAS  Google Scholar 

  • Riba G., Silvy C. (1989) Combattre les ravageurs des cultures enjeux et perspectives, INRA, Paris.

    Google Scholar 

  • Sanchis V. (2000) Biotechnological improvement of Bacillus thuringiensis for agricultural control of insect pests: benefits and ecological implications, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 441–459.

    Google Scholar 

  • Schnepf H.E., Wong H.C., Whiteley H.R. (1985) The amino acid sequence of a crystal protein from Bacillus thuringiensis: deduced from the DNA base sequence, J. Biol. Chem. 260, 6264–6272.

    PubMed  CAS  Google Scholar 

  • Singh-Ashk G.K. (2007) Bt cotton not pest resistant, The times of India, 24 August 2007.

  • Smedley D.P., Ellar D.J. (1996) Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion, Microbiol. 142, 1617–1624.

    Article  CAS  Google Scholar 

  • Stodola T.J., Andow D.A., Hyden A.R., Hinton J.L., Roark J.J., Buschman L.L., Porter P., Cronholm G.B. (2006) Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in southern United States Corn Belt population of European corn borer (Lepidoptera: Crambidae), J. Econ. Entomol. 99, 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik B.E. (1994) Evolution of resistance to Bacillus thuringiensis, Ann. Rev. Entomol. 39, 47–79.

    Article  Google Scholar 

  • Tabashnik B.E., Carrière Y., Dennehy T.J., Morin S., Sisterson M.S., Roush R.T., Shelton A.M., Zhao J.Z. (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field, J. Econ. Entomol. 96, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik B.E., Dennehy T.J., Carrière Y. (2005) Delayed resistance to transgenic cotton in pink bollworm, Proc. Natl. Acad. Sci. (USA) 102, 15389–15393.

    Article  CAS  Google Scholar 

  • Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla Jr. L.A. (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thruingiensis, J. Biol. Chem. 270, 5490–5494.

    Article  PubMed  CAS  Google Scholar 

  • Vaeck M., Reynaerts A., Höfte H., Jansens S., De Beukeleer M., Dean C., Zabeau M., Van Montagu M., Leemans J. (1987) Transgenic plants protected from insect attack, Nature 327, 33–37.

    Article  Google Scholar 

  • Van Frankenhuyzen K. (2000) Applications of Bacillus thuringiensis in forestry, in: Charles J.F., Delécluse A., Nielsen-Leroux C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 371–382.

    Google Scholar 

  • Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis deltaendotoxins, Appl. Environ. Microbiol. 56, 1378–1385.

    PubMed  Google Scholar 

  • Walker K., Mendelsohn M., Matten S., Alphin M., Ave D. (2003) The role of microbial Bt products in US crop protection, in: Metz M. (Ed.), Bacillus thuringiensis: a cornerstone of modern agriculture, Food Products Press, Binghamton, USA, pp. 31–51.

    Google Scholar 

  • Wang G., Zhang J., Song F., Wu J., Feng S., Huang D. (2006) Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests, Appl. Microbiol. Biotechnol. 72, 924–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Candas M., Griko N., Taussig R., Bulla Jr. L. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci. (USA) 103, 9897–9902.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Sanchis.

About this article

Cite this article

Sanchis, V., Bourguet, D. Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron. Sustain. Dev. 28, 11–20 (2008). https://doi.org/10.1051/agro:2007054

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2007054

Navigation