Skip to main content
Log in

Converting Methane by Using an RF Plasma Reactor

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A radio-frequency (RF) plasma system was used to convert methane gas. The reactants and final products were analyzed by using an FTIR (Fourier transform infrared spectrometer). The effects of plasma operational parameters, including feeding concentration (C) of CH 4 , operational pressure (P) in the RF plasma reactor, total gas flow rate (Q) and input power wattage (W) for CH 4 decomposition were evaluated. The results showed that the CH 4 decomposition fraction increases with increasing power input, decreasing operational pressure in the RF plasma reactor, decreasing CH 4 feeding concentration, and decreasing total gas flow rate. In addition, mathematical models based on the obtained experimental data were developed and tested by means of sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. C. Yates and N. E. Zlotin, J. Catal. 111, 317 (1988).

    Google Scholar 

  2. S. W. Benson, U.S. patent No. 4,199,533 (1980).

  3. M. H. Back and R. A. Back, Pyrolysis: Theory and Industrial Practice, Academic Press, New York (1983).

    Google Scholar 

  4. S. M. Senkan, U.S. patent No. 7,040,853 (1987).

  5. J. R. H. Ross, A. N. J. Keulen, M. E. S. Hegarty, and K. Seshan, Catal. Today 30, 193 (1996).

    Google Scholar 

  6. M. Musick, P. J. V. Tiggelen, and J. Vandooren, Combust. Flame 105, 433 (1996).

    Google Scholar 

  7. M. Matsukata, T. Matsushita, and K. Ueyama, Energ. Fuels 9, 822 (1995).

    Google Scholar 

  8. V. R. Choudhary, B. S. Uphade, and A. A. Belhekar, J. Catal. 163, 312 (1996).

    Google Scholar 

  9. E. Ruckenstein and Y. H. Hu, J. Catal. 162, 230 (1996).

    Google Scholar 

  10. C. M. D. Correa and H. A. L. Villa, Appl. Catal. B 10, 313 (1996).

    Google Scholar 

  11. Y. Li and J. N. Armor, Appl. Catal. 3, 275 (1994).

    Google Scholar 

  12. G. S. Lane and E. E. Wolf, J. Catal. 113, 144 (1988).

    Google Scholar 

  13. S. M. Senkan, Chem. Eng. Prog. 83, 58 (1987).

    Google Scholar 

  14. V. R. Choudhary, S. T. Chaudhari, and A. M. Rajput AlChE J. 37, 915 (1991).

    Google Scholar 

  15. J. Arno, J. W. Bevan, and M. Moisan, Environ. Sci. Technol. 29, 1961 (1995).

    Google Scholar 

  16. C. T. Li, W. J. Lee, C. Y. Chen, and Y. T. Wang, J. Chem. Tech. Biotechnol. 66, 382 (1996).

    Google Scholar 

  17. W. J. Lee, C. Y. Chen, W. C. Lin, Y. T. Wang, and C. J. Chin, J. Hazard. Mater, 48, 51 (1996).

    Google Scholar 

  18. J. Arno, J. W. Bevan, and M. Moisan, Environ. Sci. Technol. 30, 2427 (1996).

    Google Scholar 

  19. R. D'Agostino, F. Cramarossa, S. D. Benedictis, and G. Ferraro, Plasma Chem. Plasma Process. 1, 18 (1981).

    Google Scholar 

  20. M. Tezuka and T. Yajima, Plasma Chem. Plasma Process. 16, 329 (1996).

    Google Scholar 

  21. N. V. Mantzaris, E. Gogolides, and A. G. Boudouvis, Plasma Chem. Plasma Process. 16, 301 (1996)

    Google Scholar 

  22. M. B. Kizling and S. G. Jaras, Appl. Catal. A 147, 1 (1996).

    Google Scholar 

  23. J. E. Nicholas, A. I. Spiers, and N. A. Martin, Plasma Chem. Plasma Process. 6, 39 (1986).

    Google Scholar 

  24. T. A. Cleland and D. W. Hess, Plasma Chem. Plasma Process. 7, 370 (1987).

    Google Scholar 

  25. L. Bromberg, D. R. Cohn, M. Koch, R. M. Patrick, and P. Thomas, Phys. Lett. A 173, 293 (1993).

    Google Scholar 

  26. E. T. Prjnce, J. Appl. Phys. 70, 4903 (1991).

    Google Scholar 

  27. D. Vouagner, A. M. Becdelievre, M. Keddam, and M. Mackowski, Corros. Sci. 34, 279 (1993).

    Google Scholar 

  28. D. R. Mac Rae, Plasma Chem, Plasma Process. 9, 85S (1989).

    Google Scholar 

  29. H. Sugai, H. Kojima, A. Ishida, and H. Toyoda, Appl. Phys. Lett. 56, 2616 (1990).

    Google Scholar 

  30. M. B. Kizling and S. G. Jaras, Appl. Catal. A: General 147, 1 (1996).

    Google Scholar 

  31. M. Zhu, Q. Miao, and S. J. Parulekar, Chem. Eng. Sci. 47, 2677 (1992).

    Google Scholar 

  32. R. T. Morrison and R. N. Boyd, Organic Chemistry, 5th edn., Allyn & Bacon, Boston (1987).

    Google Scholar 

  33. S. W. Benson, J. Chem. Educ. 42, 502 (1965).

    Google Scholar 

  34. W. J. Lee, B. Cicek, and S. M. Senkan, Environ. Sci. Technol. 27, 949 (1993).

    Google Scholar 

  35. M. K. Abdelaal, “Chemical structure and kinetic modeling of 1,2-dichloroethane/methane fuel-rich flames,” Ph.D. Thesis, Illinois Institute of Technology, Chicago (1990).

    Google Scholar 

  36. M. Xiequi, B. Cicek, and S. M. Senkan, Combust. Flame 94, 131 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, LT., Lee, WJ., Chen, CY. et al. Converting Methane by Using an RF Plasma Reactor. Plasma Chemistry and Plasma Processing 18, 215–239 (1998). https://doi.org/10.1023/A:1021650516043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021650516043

Navigation