Skip to main content
Log in

Catalyst Characterisation and Preparation Using Sample Controlled Thermal Techniques—High Resolution Studies and the Determination of the Energetics of Surface and Bulk Processes

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This paper summarises some applications of advanced thermal techniques for the characterisation and preparation of catalysts using different sample controlled thermal analysis (SCTA) methods. The techniques are applied to temperature programmed decomposition (calcination), oxidation, reduction, dehydration, desorption and reaction. SCTA methods can produce significant enhancements in the resolution of complex reactions, provide a detailed insight into the energetics of surface and bulk processes and, when applied to catalyst preparation, give improvements in the pore structure and uniformity of the resulting materials. The advantages and limitations of SCTA methods, in which the sample temperature or concentration of reactant gas is altered as some function of the rate of a thermally induced physico-chemical process, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Thomas and W.J. Thomas, Principles and practice of heterogeneous catalysis (Weinheim, New York, Basel, Cambridge, Tokyo: VCH, 1996).

    Google Scholar 

  2. Y. Iwasawa, Catal. Today 18 (1993) 21.

    Google Scholar 

  3. E. Urbanovici and E. Segal, J. Therm. Anal. Calorim. 55 (1999) 919.

    Google Scholar 

  4. M. Reading, D. Dollimore, J. Rouquerol and F. Rouquerol, J. Therm. Anal. 29 (1984) 775.

    Google Scholar 

  5. M. Maciejewski, M. J. Therm. Anal. 38 (1992) 51.

    Google Scholar 

  6. N.W. Hurst, S.J. Gentry, A. Jones and B.D. McNicol, Catal. Rev. Sci. Eng. 24 (1982) 233.

    Google Scholar 

  7. D.A.M. Monti and A. Baiker, J. Catal. 83 (1983) 323.

    Google Scholar 

  8. H.E. Kissinger, Anal. Chem. 29 (1957) 1702.

    Google Scholar 

  9. J.L. Falconer and J.A. Schwarz, Catal. Rev. 25 (1983) 141.

    Google Scholar 

  10. P.A. Redhead, Trans. Faraday Soc. 57 (1961) 641.

    Google Scholar 

  11. F. Arena, F. Frusteri, A. Parmaliana and N. Giordano, Appl. Catal. A-Gen. 125 (1995) 39.

    Google Scholar 

  12. M. Reading, Thermal Analysis–Techniques and Application (eds. E.L. Charsley and S.B. Warrington (Royal Society of Chemistry, Cambridge, 1992).

    Google Scholar 

  13. D. Dollimore, Thermochim. Acta 50 (1981) 123.

    Google Scholar 

  14. A. Ortega, Thermochim. Acta 298 (1997) 161.

    Google Scholar 

  15. J.H. Flynn, J. Therm. Anal. 34 (1988) 367.

    Google Scholar 

  16. J. Rouquerol, Thermochim. Acta 144 (1989) 209.

    Google Scholar 

  17. E.V. Boldyreva, J. Therm. Anal 38 (1992) 89.

    Google Scholar 

  18. A. Ortega, Thermochim. Acta 298 (1997) 205

    Google Scholar 

  19. J. Rouquerol, Bull. Soc. Chim. Fr. 31 (1964) 67.

    Google Scholar 

  20. J. Rouquerol, Thermochim. Acta 300 (1997) 247.

    Google Scholar 

  21. L. Erden, F. Paulik and J. Paulik, Hungarian Patent 152197 (1962).

  22. F. Paulik and J. Paulik, J. Thermochim. Acta 100 (1986) 23.

    Google Scholar 

  23. J. Rouquerol, S. Bordere and F. Rouquerol, Thermochim. Acta 203 (1992) 193.

    Google Scholar 

  24. M.D. Alcala, F.J. Gotor, L.A. Perez-Maqueda, C. Real, M.J. Dianez and J.M. Criado, J. Therm. Anal. Calorim. 56 (1999) 1447.

    Google Scholar 

  25. J. Maelek, J. Sestak, F. Rouquerol, J. Rouquerol, J.M. Criado, and A. Ortega, J. Thermal. Anal. 38 (1992) 71.

    Google Scholar 

  26. J.M. Criado, F.J. Gotor, A. Ortega and C. Real, Thermochim. Acta 199 (1992) 235.

    Google Scholar 

  27. M. Readind, D. Dollimore and R.J. Whitehead, J. Therm. Anal. 37 (1991) 37.

    Google Scholar 

  28. J. M. Criado, A. Ortega, and F. Gotor, Thermochim. Acta 157 (1990) 171.

    Google Scholar 

  29. F.J. Gotor, M.J. Criado, J. Malek and N. Koga, J. Phys. Chem. A. 104 (2000) 10777.

    Google Scholar 

  30. J. Rouquerol, Thermochim. Acta 144 (1990) 25.

    Google Scholar 

  31. A. Ortega, S. Akhouayri, F. Rouquerol and J. Rouquerol, Thermochim. Acta 247 (1994) 321.

    Google Scholar 

  32. A. Ortega, L.A. Perez-Maqueda and J.M. Criado, J. Therm. Anal. Calorim. 42 (1994) 551.

    Google Scholar 

  33. O.T. Sorensen, Thermochim. Acta 50 (1982) 263.

    Google Scholar 

  34. O.T. Sorensen, J. Therm. Anal. 38 (1992) 213.

    Google Scholar 

  35. P.A. Barnes, G.M.B. Parkes and E.L. Charsley, Anal. Chem. 66 (1994) 2226.

    Google Scholar 

  36. F.J. Gotor. L.A. Perez-Maqueda, A. Ortega and J.M. Criado, J. Therm. Anal. Calorim. 53 (1998) 389.

    Google Scholar 

  37. P.A. Barnes, G.M.B. Parkes and E.L. Charsley, Anal. Chem. 71 (1999) 2482.

    Google Scholar 

  38. G.M.B. Parkes, P.A. Barnes, E.L. Charsley, M. Reading and I. Abrahams, Thermochim. Acta 354 (2000) 39.

    Google Scholar 

  39. E.A. Dawson, P.A. Barnes, G.M.B. Parkes, M.J. Chinn and P.R. Norman, Thermochim. Acta 335 (1999) 141.

    Google Scholar 

  40. G.M.B. Parkes, P.A. Barnes and E.L. Charsley, Thermochim. Acta 320 (1998) 297.

    Google Scholar 

  41. P.A. Barnes, G.M.B. Parkes, D.R. Brown and E.L. Charsley, Thermochim. Acta 269 (1995) 665.

    Google Scholar 

  42. J.G. Ziegler and N.B. Nicholas, J. Dyn. Syst-T. ASME 115 (1993) 220.

    Google Scholar 

  43. P.A. Barnes and G.M.B. Parkes, J. Therm. Anal. 39 (1993) 607.

    Google Scholar 

  44. M.J. Tiernan, P.A. Barnes and G.M.B. Parkes, J. Phys. Chem. 103 (1999) 6944.

    Google Scholar 

  45. L.A. Perez-Maqueda, J.M. Criado, J. Subrt and C. Real, Catal. Let. 60 (1999) 151.

    Google Scholar 

  46. P.A. Barnes and G.M.B. Parkes, Stud. Surf. Sci. Catal. 91 (1995) 859.

    Google Scholar 

  47. E.A. Dawson, G.M.B. Parkes, P.A. Barnes, M.J. Chinn and P.R. Norman, J. Therm. Anal. Calorim. 56 (1999) 267.

    Google Scholar 

  48. M.J. Tiernan, E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, M. Feeley and O.E. Finlayson, Thermochim. Acta (2001) in print.

  49. M.J. Tiernan, P.A. Barnes and G.M.B. Parkes, J. Phys. Chem. 103 (1999) 338.

    Google Scholar 

  50. M.J. Tiernan, P.A. Barnes and G.M.B. Parkes, J. Phys. Chem. J. Therm. Anal. Calor. 56 (1999) 733.

    Google Scholar 

  51. M.J. Tiernan, P.A. Barnes and G.M.B. Parkes, J. Phys. Chem. 105 (2001) 220.

    Google Scholar 

  52. E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, D.R. Brown and M. Naderi, J. Phys. Chem. (2001) 105 (2001) 6178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesenko, E., Barnes, P., Parkes, G. et al. Catalyst Characterisation and Preparation Using Sample Controlled Thermal Techniques—High Resolution Studies and the Determination of the Energetics of Surface and Bulk Processes. Topics in Catalysis 19, 283–301 (2002). https://doi.org/10.1023/A:1015336828519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015336828519

Navigation