Skip to main content

Temperature-Programmed (TP) Techniques

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Abstract

Temperature-programmed techniques are extremely informative and provide fundamental surface information about the number of surface sites, chemical nature of the surface sites, catalytic reaction mechanisms, and surface kinetics for the rate-determining-steps for all types of solid catalysts (bulk oxides/metals, mixed oxides/metal alloys, supported metals/metal oxides, and zeolites/molecular sieves). The ability to address such a wide range of problems for all types of solid catalysts makes temperature-programmed techniques among the most versatile methods in catalysis research.

In this chapter, the temperature-programmed techniques will be systematically reviewed by the fundamental methods, instruments, and applications. In Sect. 45.2, the description of the temperature-programmed methods is divided into theory, benefits, limitations, and comparison with other techniques. The temperature-programmed instruments, under ultrahigh vacuum and gas flow conditions, and its historical development are described in Sect. 45.3. In Sect. 45.4, the relationship of the structural information and reactivity for different catalyst cases has been established by applying various temperature-programmed methods such as Thermogravimetric Analysis-Differential Thermogravimetric Analysis (TGA-DTG), Temperature Programmed Decomposition (TPD), Temperature Programmed Oxidation/Reduction (TPO/TPR), Temperature Programmed Desorption (TPD), and Temperature Programmed Surface Reactions (TPSR). The advantage of temperature-programmed techniques is that they can distinguish between multiple kinetic processes occurring during temperature programming. This kinetic feature, and its quantitative capability, makes temperature-programmed techniques a very powerful characterization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, S.E.D. (ed.): Handbook of Thermal analysis and Calorimetry: Application to Polymers and Plastics, vol. 3. Elsevier, Amsterdam (2002)

    Google Scholar 

  2. Auroux, A. (ed.): Calorimetry and Thermal Methods in Catalysis Springer Series in Material Science, vol. 154. Springer, Heidelberg (2013)

    Google Scholar 

  3. Redhead, P.A.: Thermal desorption of gases. Vacuum. 12, 203–211 (1962)

    CAS  Google Scholar 

  4. Masel, R.I.: Principles of Adsorption and Reaction on Solid Surfaces Wiley Series in Chemical Engineering. Wiley, New York (1996)

    Google Scholar 

  5. Topsoe, N.-Y., Topsoe, H., Dumesic, J.A.: Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia: I. Combined temperature programmed in-situ FTIR and on-line mass spectroscopy studies. J. Catal. 151, 226–240 (1995)

    CAS  Google Scholar 

  6. Sato, S., Ukisu, Y., Ogawa, H., Takasu, Y.: Infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed desorption study on the absorption and decomposition of Fe(CO)5 over silver surfaces. J. Chem. Soc. Farad. Trans. 24, 3527–3780 (1998)

    Google Scholar 

  7. Bolina, A.S., Wolff, A.J., Brown, W.A.: Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface. J. Chem. Phys. 122, 044713 (2005)

    CAS  Google Scholar 

  8. Elmay, Y., Le Brech, Y., Delmotte, L., Dufour, A., Brosse, N., Gadiou, R.: Characterization of Miscanthus pyrolysis by DRIFTs, UV Raman spectroscopy and mass spectrometry. J. Analy. Appl. Pyrolysis. 113, 402–411 (2015)

    CAS  Google Scholar 

  9. Litorja, M., Haynes, C.L., Haes, A.J., Jensen, T.R., Van Duyne, R.P.: Surface-enhanced raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces. J. Phys. Chem. B. 105, 6907–6915 (2001)

    CAS  Google Scholar 

  10. Zhao, C., Wachs, I.E.: An operando Raman, IR, and TPSR spectroscopic investigation of the selective oxidation of propylene to acrolein over a model supported vanadium oxide monolayer catalyst. J. Phys. Chem. C. 112, 11363–11372 (2008)

    CAS  Google Scholar 

  11. Xu, J., Deng, Y.-Q., Luo, Y., Mao, W., Yang, X.-J., Han, Y.-F.: Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on alpha-Mn2O3 nanocatalyst. J. Catal. 300, 225–234 (2013)

    CAS  Google Scholar 

  12. Brender, P., Gadiou, R., Rietsch, J.-C., Fioux, P., Dentzer, J., Ponche, A., Vix-Guterl, C.: Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis. Anal. Chem. 84, 2147–2153 (2012)

    CAS  Google Scholar 

  13. Pastore de Lima, A.E., de Oliveira, D.C.: In situ XANES study of cobalt in Co-Ce-Al catalyst applied to steam reforming of ethanol reaction. Catal. Today. 283, 104–109 (2017)

    Google Scholar 

  14. Souda, R.: A temperature-programmed time-of-flight secondary ion mass spectroscopy study of intermixing of amorphous ethanol and heavy-water films at 15–200 K. J. Chem. Phys. 122, 134711 (2005)

    Google Scholar 

  15. Wunderlich, B.: Thermal Analysis in Encyclopedia of Materials: Science and Technology, 2nd edn, pp. 9134–9141 (2001)

    Google Scholar 

  16. Watson, M., O’Neill, J.: Differential Microcalorimeter, U.S. Patent 3,263,484, issued August 2, 1966; filed April 4, (1962)

    Google Scholar 

  17. Madix, R.J.: The application of flash desorption spectroscopy to chemical reactions on surfaces: temperature programmed reaction spectroscopy. Crit. Rev. Solid States Mater. Sci. 7(2), 143–152 (1978)

    CAS  Google Scholar 

  18. Robertson, S.D., McNicol, B.D., de Baas, J.H., Kloet, S.C., Jenkins, J.W.: Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction. J. Catal. 37(3), 424–431 (1975)

    CAS  Google Scholar 

  19. Golunski, S.E., Jenkins, J.W.: A tribute. Platinum Metals Rev. 52(4), 249–250 (2008)

    Google Scholar 

  20. Koga, N., Yamada, S., Kimura, T.: Thermal decomposition of silver carbonate: phenomenology and physicogeometrical kinetics. J. Phys. Chem. C. 117, 326–336 (2013)

    CAS  Google Scholar 

  21. Nakano, M., Fujiwara, T., Koga, N.: Thermal decomposition of silver acetate: physico-geometrical kinetic features and formation of silver nanoparticles. J. Phys. Chem. C. 120, 8841–8854 (2016)

    CAS  Google Scholar 

  22. Twu, J., Shih, C.-F., Guoa, T.-H., Chen, K.-H.: Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate. J. Mater. Chem. 7(11), 2273–2277 (1997)

    CAS  Google Scholar 

  23. Zhenshenga, J., Chanjuan, X., Qingmei, Z., Feng, Y., Jiazheng, Z., Jinzhen, X.: Catalytic behavior of nanoparticle α-PtO2 for ethanol oxidation. J. Mol. Catal. A Chem. 191, 61–66 (2003)

    Google Scholar 

  24. Liu, W.-J., Kao, T.-W., Dai, T.-M., Jehng, J.M.: Ni-based nanocomposites supported on graphene nano sheet (GNS) for supercapacitor applications. J. Solid State Electrochem. 18(1), 189–196 (2014)

    CAS  Google Scholar 

  25. Twu, J., Shih, C.-F., Guo, T.-H., Chen, K.-H.: Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate. J. Mater. Chem. 7(11), 2273–2277 (1997)

    CAS  Google Scholar 

  26. Jiang, W., Nadeau, G., Zaghib, K., Kinoshita, K.: Thermal analysis of the oxidation of natural graphite – effect of particle size. Thermochim. Acta. 351(1–2), 85–93 (2000)

    CAS  Google Scholar 

  27. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M.S.: Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2(6), 615–619 (2002)

    CAS  Google Scholar 

  28. Laine, N.R., Vastola, F.J., Walker Jr., P.L.: The importance of active surface area in the carbon-oxygen reaction. J. Phys. Chem. 67(10), 2030–2034 (1963)

    CAS  Google Scholar 

  29. Jones, L.E., Thrower, P.A., Walker Jr., P.L.: Reactivity and related microstructure of 3d carbon/carbon composites. Carbon. 24(1), 51–59 (1986)

    CAS  Google Scholar 

  30. Walker Jr., P.L.: Carbon: an old but new material revisited. Carbon. 28(2/3), 261–279 (1990)

    CAS  Google Scholar 

  31. Welham, N.J., Williams, J.S.: Extended milling of graphite and activated carbon. Carbon. 36(9), 1309–1315 (1998)

    CAS  Google Scholar 

  32. Yao, N., Lordi, V., Ma, S.X.C., Dujardin, E., Krishnan, A., Treacy, M.M.J.: Structure and oxidation patterns of carbon nanotubes. J. Mater. Res. 13(9), 2432–2437 (1998)

    CAS  Google Scholar 

  33. Chen, C.-M., Dai, Y.-M., Huang, J.G., Jehng, J.-M.: Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon. 44, 1808–1820 (2006)

    CAS  Google Scholar 

  34. Martinez-Huerta, M.V., Gao, X., Tian, H., Wachs, I.E., Fierro, J.L.G., Bañares, M.A.: Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: relationship between molecular structures and chemical reactivity. Catal. Today. 118(3–4), 279–287 (2006)

    CAS  Google Scholar 

  35. Tain, H., Ross, E.I., Wachs, I.E.: Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. J. Phys. Chem. B. 110(19), 9593–9600 (2006)

    Google Scholar 

  36. Jaegers, N.R., Wan, C., Hu, M.Y., Vasiliu, M., Dixon, D.A., Walter, E., Wachs, I.E., Wang, Y., Hu, J.Z.: Investigation of silica-supported vanadium oxide catalysts by high-field 51V magic-angle spinning NMR. J. Phys. Chem. C. 121(11), 6246–6254 (2017)

    CAS  Google Scholar 

  37. Arena, F., Frusteri, F., Martra, G., Coluccia, S., Parmaliana, A.: Surface structures, reduction pattern and oxygen chemisorption of V2O5/SiO2 catalysts. J. Chem. Soc. Faraday Trans. 93, 3849–3854 (1997)

    CAS  Google Scholar 

  38. Deo, G., Wachs, I.E.: Reactivity of supported vanadium oxide catalysts: the partial oxidation of methanol. J. Catal. 146, 323–334 (1994)

    CAS  Google Scholar 

  39. Gao, X., Fierro, J.L.G., Wachs, I.E.: Structural characteristics and catalytic properties of highly dispersed ZrO2/SiO2 and V2O5/ZrO2/SiO2 catalysts. Langmuir. 15, 3169–3178 (1999)

    CAS  Google Scholar 

  40. Mitra, B., Gao, X., Wachs, I.E., Hirt, A.M., Deo, G.: Characterization of supported rhenium oxide catalysts: effect of loading, support and additives. Phys. Chem. Chem. Phys. 3, 1144–1152 (2001)

    CAS  Google Scholar 

  41. Zhu, M., Rocha, T.C.R., Lunkenbein, T., Knop-Gericke, A., Schlögl, R., Wachs, I.E.: Promotion mechanisms of iron oxide-based high temperature water–gas shift catalysts by chromium and copper. ACS Catal. 6(7), 4455–4464 (2016)

    CAS  Google Scholar 

  42. Kim, Y.-C., Park, N.-C., Shin, J.-S., Lee, S.R., Lee, Y.J., Moon, D.J.: Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal. Today. 87, 153–162 (2003)

    CAS  Google Scholar 

  43. Sung, Y.-E., Lee, W.Y., Rhee, H.-K., Lee, H.-I.: The effect of oxygen on the chemisorption on polycrystalline silver surface. Korean J. Chem. Eng. 6, 300–305 (1989)

    CAS  Google Scholar 

  44. Backx, C., de Groot, C.P.M., Biloen, P., Sachtler, W.M.H.: Interaction of O2, CO2, CO, C2H4 and C2H4O with Ag(110). Surf. Sci. 128, 81–103 (1983)

    CAS  Google Scholar 

  45. Grant, R.B., Lambert, R.M.: A single crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene. J. Catal. 92, 364–375 (1985)

    CAS  Google Scholar 

  46. Badlani, M., Wachs, I.E.: Methanol: a “smart” chemical probe molecule. Catal. Lett. 75, 137–149 (2001)

    CAS  Google Scholar 

  47. Briand, L.E., Farneth, W.E., Wachs, I.E.: Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts. Catal. Today. 62, 219–229 (2000)

    CAS  Google Scholar 

  48. Farneth, W.E., Ohuchi, F., Staley, R.H., Chowdhry, U., Sleight, A.W.: Mechanism of partial oxidation of methanol over MoO3 as studied by temperature-programmed desorption. J. Phys. Chem. 89(12), 2493–2497 (1985)

    CAS  Google Scholar 

  49. Hu, H., Wachs, I.E.: Catalytic properties of supported molybdenum oxide catalysts: in situ Raman and methanol oxidation studies. J. Phys. Chem. 99(27), 10911–10922 (1995)

    CAS  Google Scholar 

  50. Wachs, I.E., Jehng, J.-M., Ueda, W.: Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts. J. Phys. Chem. B. 109, 2275–2284 (2005)

    CAS  Google Scholar 

  51. Wong, G.S., Concepcion, M.R., Vohs, J.M.: Oxidation of methanol to formaldehyde on vanadia films supported on CeO2(111). J. Phys. Chem. B. 106, 6451–6455 (2002)

    CAS  Google Scholar 

  52. Wong, G., Vohs, J.: An XPS study of the growth and electronic structure of vanadia films supported on CeO2(111). Surf. Sci. 498, 266–274 (2002)

    CAS  Google Scholar 

  53. Datka, J., Turek, A.M., Jehng, J.-M., Wachs, I.E.: Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation. J. Catal. 135, 186–199 (1992)

    CAS  Google Scholar 

  54. Jehng, J.-M., Turek, A.M., Wachs, I.E.: Surface modified niobium oxide catalyst: synthesis, characterization, and catalysis. Appl. Catal. A. 83, 179–200 (1992)

    CAS  Google Scholar 

  55. Tatibouet, J.M.: Methanol oxidation as a catalytic surface probe. Appl. Catal. A. 148, 213–252 (1997)

    Google Scholar 

  56. Tatibouet, J.M., Lauron-Pernot, H.: Transient isotopic study of methanol oxidation on unsupported V2O5: mechanism of methylal formation. J. Mol. Catal. A Chem. 171, 205–216 (2001)

    CAS  Google Scholar 

  57. Burcham, L.J., Briand, L.E., Wachs, I.E.: Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 2. Bulk metal oxide catalysts. Langmuir. 17, 6175–6184 (2001)

    CAS  Google Scholar 

  58. Routray, K., Zhou, W., Kiely, C.J., Grünert, W., Wachs, I.E.: Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. J. Catal. 275, 84–98 (2010)

    CAS  Google Scholar 

  59. Wachs, I.E.: Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 42, 11762–11769 (2013)

    CAS  Google Scholar 

  60. Mars, P., van Krevelen, D.W.: Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954)

    CAS  Google Scholar 

  61. Soares, A.P.V., Portela, M.F., Klennemann, A.: Methanol selective oxidation to formaldehyde over iron-molybdate catalysts. Catal. Rev. Sci. Eng. 47, 125–174 (2005)

    CAS  Google Scholar 

  62. Routray, K., Briand, L.E., Wachs, I.E.: Is there a relationship between the M=O bond length (strength) of bulk mixed metal oxides and their catalytic activity? J. Catal. 256, 145–153 (2008)

    CAS  Google Scholar 

  63. Zhu, M., Wachs, I.E.: Resolving the reaction mechanism for H2 formation from high-temperature water–gas shift by chromium–iron oxide catalysts. ACS Catal. 6, 2827–2830 (2016)

    CAS  Google Scholar 

  64. Poulston, S., Rowbotham, E., Stone, P., Parlett, P., Bowker, M.: Temperature-programmed desorption studies of methanol and formic acid decomposition on copper oxide surfaces. Catal. Lett. 52, 63–67 (1998)

    CAS  Google Scholar 

  65. Zhu, M., Wachs, I.E.: Determining number of active sites and TOF for the high-temperature water gas shift reaction by iron oxide-based catalysts. ACS Catal. 6, 1764–1767 (2016)

    CAS  Google Scholar 

  66. Kalamaras, C.M., Olympiou, G.G., Efstathiou, A.M.: The water-gas shift reaction on Pt/γ-Al2O3 catalyst: operando SSITKA-DRIFTS-mass spectroscopy studies. Catal. Today. 138, 228–234 (2008)

    CAS  Google Scholar 

  67. Zhu, M., Lai, J.-K., Wachs, I.E.: Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Appl. Catal. B Environ. 224, 836–840 (2018)

    CAS  Google Scholar 

  68. He, Y., Ford, M.E., Zhu, M., Liu, Q., Tumuluri, U., Wu, Z., Wachs, I.E.: Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl. Catal. B Environ. 193, 141–150 (2016)

    CAS  Google Scholar 

  69. Guerrero-Pérez, M.O., Bañares, M.A.: Operando Raman study of alumina-supported Sb–V–O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement. Chem. Commun. 1292–1293, 1292 (2002)

    Google Scholar 

  70. Bañares, M.A., Guerrero-Perez, M.O., Fierro, J.L.G., Cortez, G.G.: Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous materials. J. Mater. Chem. 12, 3337–3342 (2002)

    Google Scholar 

Download references

Acknowledgments

I. E. Wachs would like to thank the funding from the Department of Energy, Basic Energy Sciences (FG02-93ER14350). The travel and short-term research grant (MOST- 108-2918-I-005 -007) is gratefully appreciated by J. M. Jehng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Mirn Jehng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jehng, JM., Wachs, I.E., Ford, M. (2023). Temperature-Programmed (TP) Techniques. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_45

Download citation

Publish with us

Policies and ethics