Skip to main content
Log in

Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of NO in alkaline solutions was investigated at gas diffusion electrodes with various metal (Ru, Rh, lr, Pd and Pt) catalysts at various NO flow rates. Reduction currents are observed at potentials more negative than 0.95 V, which increase with the decrease in potential and also with increasing gas flow rate. The faradaic efficiencies of N2O formation decrease with decreasing NO flow rate and with decrease in potential. The faradaic efficiencies of N2 formation increase with decreasing flow rate and with decrease in potential. The reduction of NO to N2 at a flow rate of 5mlmin−1 occurs selectively at potentials more negative than 0.1V; the faradaic efficiency of N2 formation is approximately 95 at Pd catalysts.

Electricity production and NO decomposition can be carried out simultaneously using an H2NO fuel cell reactor. The faradaic efficiency of N2 formation at a flow rate of 5mlmin−1 is approximately 80 at a cell voltage of 0.25 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lorimer and A.T. Bell, J. Catal. 59 (1979) 223.

    Google Scholar 

  2. M. L. Unland, ibid. 31 (1973) 159.

    Google Scholar 

  3. H. Arai and H. Tominaga, ibid. 43 (1976) 131.

    Google Scholar 

  4. R. Dictor, ibid. 109 (1988) 89.

    Google Scholar 

  5. E. A. Hyde, R. Rudham and C. H. Rochester, J. Chem., Faraday Trans. 86 (1984) 531.

    Google Scholar 

  6. K. Tomishige, K. Asakura and Y. Iwasawa, J. Chem. Soc., Chem Commun. (1993) 184.

  7. R. M. Lambert and C. M. Comrie, Surf. Sci. 46 (1974) 61.

    Google Scholar 

  8. R. D. Ramsier, Q. Gao, H. N. Waltenburg and K. W. Lee, O. W. Nooij, L. Lefferts and J. T. Yates, Jr., ibid. 320 (1994) 209.

    Google Scholar 

  9. T. W. Root, L. D. Schmidt and G. B. Fisher, ibid. 134 (1983) 30.

    Google Scholar 

  10. L. J. J. Janssen, Electrochim. Acta 21 (1976) 811.

    Google Scholar 

  11. M. J. Foral and S. H. Langer, ibid. 33 (1988) 257.

    Google Scholar 

  12. D. Dutta and D. Landolt, J. Electrochem. Soc. 199 (1972) 1320.

    Google Scholar 

  13. L. J. J. Janssen, M. M. J. Pieterse and E. Barendrecht, Electrochim. Acta 22 (1977) 27.

    Google Scholar 

  14. D. L. Ehman and D. T. Sawyer, J. Electroanal. Chem. 16 (1974) 541.

    Google Scholar 

  15. H. Ebert, R. Parsons, G. Ritzoulis and T. VanderNoot, ibid. 264 (1989) 181.

    Google Scholar 

  16. K. E. Johnson and D. T. Sawyer, ibid. 49 (1974) 95.

    Google Scholar 

  17. N. Furuya and H. Yoshiba, ibid. 303 (1989) 271.

    Google Scholar 

  18. M. Shibata, K. Murase and N. Furuya, Denki Kagaku, 66 (1998) 811.

    Google Scholar 

  19. N. Konishi, K. Hara, A. Kudo and T. Sakata, Bull. Chem. Soc. Jpn. 69 (1996) 2159.

    Google Scholar 

  20. M. Watanabe, S. Motoo and N. Furuya, US Patent 4 931 168 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, M., Murase, K. & Furuya, N. Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts. Journal of Applied Electrochemistry 28, 1121–1125 (1998). https://doi.org/10.1023/A:1003451119024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003451119024

Navigation