Skip to main content
Log in

Writhe of DNA induced by a terminal twist

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2005

Abstract

This paper considers the three-dimensional structure of B-form DNA. The molecule may be open or covalently closed. For the former, its two ends are not allowed to move or rotate freely in space unless the molecule is under the influence of rigid body motions of the ambient space. Implied by the elastic rod model for DNA, the molecule writhes immediately when subject to a terminal twist as long as its axis is none of the following curves: lines, circular arcs, circular helices. This result is remarkably different from well-known results about DNA of other conformations. For example, if a DNA is regarded as an elastic rod whose axis is a circle, then it has no induced writhe when subject to a terminal twist until the latter meets a critical extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, W.R., Crick, F.H.C., White, J.H., 1980. Supercoiled DNA. Sci. Am. 243, 100–113.

    Google Scholar 

  • Bauer, W.R., Lund, R.A., White, J.H., 1993. Twist and writhe of a DNA loop containing intrinsic bends. Proc. Natl. Acad. Sci. USA. 90, 833–837.

    Article  Google Scholar 

  • Benham, C.J., 1977. Elastic model of supercoiling. Proc. Natl. Acad. Sci. USA 74, 2387–2401.

    Article  Google Scholar 

  • Benham, C.J., 1983. Geometry and mechanics of DNA superhelicity. Biopolymers 22, 2477–2495.

    Article  Google Scholar 

  • Benham, C.J., 1985. Theoretical analysis of conformational equilibria in superhelical DNA. Ann. Rev. Biophys. Biophys. Chem. 14, 23–45.

    Article  Google Scholar 

  • Benham, C.J., 1987. The role of the stress resultant in determining mechanical equilibria of superhelical DNA. Biopolymers 26, 9–15.

    Article  Google Scholar 

  • Benham, C.J., 1989. Onset of writhing in circular elastic polymers. Phys. Rev. A 39, 2582–2586.

    Article  Google Scholar 

  • Birkhoff, G., Rota, G.-C., 1969. Ordinary Differential Equations, 2nd edition. John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Buck, R.C., 1978. Advanced Calculus, 3rd edition. MaGraw-Hill, New York.

    MATH  Google Scholar 

  • Byrd, P.F., Friedman, M.D., 1954. Handbook of Elliptic Integrals for Engineers and Physicists. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Coleman, B.D., Dill, E.H., Lembo, M., Liu, Z., Tobias, I., 1993. On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359.

    Article  Google Scholar 

  • Coleman, B.D., Swigon, D., 2000. Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J. Elast. 60, 171–221.

    Article  MathSciNet  Google Scholar 

  • Coleman, B.D., Tobias, I., Swigon, D., 1995. Theory of the influence of end conditions on self-contact in DNA loops. J. Chem. Phys. 103, 9101–9109.

    Article  Google Scholar 

  • Dichmann, D.J., Li, Y.W., Maddocks, J.H., 1996. Hamiltonian formulations and symmetries in rod mechanics. In: Mesirov, J.P. et al. (Eds.), Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol. 82. Springer, New York, pp. 71–113.

    Google Scholar 

  • do Carmo, M.P., 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Fain, B., Rudnick, J., Östlund, S., 1997. Conformations of linear DNA. Phys. Rev. E 55, 7364–7368.

    Article  Google Scholar 

  • Fain, B., Rudnick, J., 1999. Conformations of closed DNA. Phys. Rev. E 60, 7239–7252.

    Article  MathSciNet  Google Scholar 

  • Goriely, A., Tabor, M., 1997. Nonlinear dynamics of filaments III: Instabilities of helical rods. Proc. R. Soc. London Ser. A 453, 2583–2601.

    Article  MATH  MathSciNet  Google Scholar 

  • Hagerman, P.J., 1988. Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem. 17, 265–286.

    Article  Google Scholar 

  • Hao, M.-H., Olson, W.K., 1989. Global equilibrium configurations of supercoiled DNA. Macromolecules 22, 3292–3303.

    Article  Google Scholar 

  • Hu, K., 2003. Buckling of some isotropic, intrinsically curved elasticas induced by a terminal twist. Appl. Math. Lett. 16, 193–197.

    Article  MATH  MathSciNet  Google Scholar 

  • Langer, J., Singer, D., 1984. On the total curvature of closed curves. J. Differential Geom. 20, 1–22.

    MATH  MathSciNet  Google Scholar 

  • Le Bret, M., 1979. Catastrophic variation of twist and writhing of circular DNAs with constraint. Biopolymers 18, 1709–1725.

    Article  Google Scholar 

  • Love, A.E.H., 1944. A Treatise on the Mathematical Theory of Elasticity, 4th edition. Dover, New York.

    MATH  Google Scholar 

  • Marini, J.C., Levene, S.D., Crothers, D.M., Englund, P.T., 1982. A bent helix in kinetoplast DNA. Cold Spring Harb. Symp. Quant. Biol. 47, 279–283.

    Google Scholar 

  • Milnor, J.W., 1950. On the total curvature of knots. Ann. Math. 52, 248–257.

    Article  MATH  MathSciNet  Google Scholar 

  • Olson, W.K., 1996. Simulating DNA at low resolution. Curr. Opin. Struct. Biol. 6, 242–256.

    Article  Google Scholar 

  • Qian, H., White, J.H., 1998. Terminal twist induced continuous writhe of a circular rod with intrinsic curvature. J. Biomol. Struct. Dyn. 16, 663–669.

    Google Scholar 

  • Qian, H., White, J.H. Twist induced abrupt writhe of naturally straight arch with induced curvature (unpublished).

  • Shi, Y., Hearst, J.E., 1994. The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5184–5200.

    Google Scholar 

  • Swigon, D., Coleman, B.D., Tobias, I., 1998. The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biophys. J. 74, 2515–2530.

    Article  Google Scholar 

  • Tobias, I., Coleman, B.C., Lembo, M., 1996. A class of exact dynamic solutions in the elastic rod model of DNA with implications for the theory of fluctuations in the torsional motion of plasmids. J. Chem. Phys. 105, 2517–2526.

    Article  Google Scholar 

  • Tobias, I., Coleman, B.D., Olson, W.K., 1994. The dependence of DNA tertiary structure on end conditions: theory and implications for topological transitions. J. Chem. Phys. 101, 10990-10996.

    Google Scholar 

  • Tobias, I., Olson, W.K., 1993. The effect of intrinsic curvature on supercoiling: predictions of elasticity theory. Biopolymers 33, 639–646.

    Article  Google Scholar 

  • Ulanovsky, L., Bodner, M., Trifonov, E.N., Choder, M., 1986. Curved DNA: design, synthesis, and circularization. Proc. Natl. Acad. Sci. USA. 83, 862–866.

    Article  Google Scholar 

  • Wadati, M., Tsuru, H., 1986. Elastic model of looped DNA. Physica D 21, 213–226.

    Article  MATH  MathSciNet  Google Scholar 

  • Watson, J.D., Crick, F.H.C., 1953. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  Google Scholar 

  • Westcott, T.P., Tobias, I., Olson, W.K., 1995. Elasticity theory and numerical analysis of DNA supercoiling: an application to DNA looping. J. Phys. Chem. 99, 17926-17935.

    Google Scholar 

  • White, J.H., 1969. Self-linking and the Gauss integral in higher dimensions. Amer. J. Math. 91, 693–728.

    Article  MATH  MathSciNet  Google Scholar 

  • White, J.H., Lund, R.A., Bauer, W.R., 1996. Twist, writhe, and geometry of a DNA loop containing equally spaced coplanar bends. Biopolymers 38, 235–250.

    Article  Google Scholar 

  • Zajac, E.E., 1962. Stability of two planar loop elasticas. J. Appl. Mech. (Trans. ASME Ser. E) 29, 136–142.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To my mother for her 70th birthday

An erratum to this article is available at http://dx.doi.org/10.1016/j.bulm.2005.06.002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K. Writhe of DNA induced by a terminal twist. Bull. Math. Biol. 67, 197–209 (2005). https://doi.org/10.1016/j.bulm.2004.05.008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.05.008

Keywords

Navigation