Skip to main content
Log in

Transfer of Natural Micro Structures to Bionic Lightweight Design Proposals

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The abstraction of complex biological lightweight structure features into a producible technical component is a fundamental step within the transfer of design principles from nature to technical lightweight solutions. A major obstacle for the transfer of natural lightweight structures to technical solutions is their peculiar geometry. Since natural lightweight structures possess irregularities and often have extremely complex forms due to elaborate growth processes, it is usually necessary to simplify their design principles. This step of simplification/abstraction has been used in different biomimetic methods, but so far, it has an arbitrary component, i.e. it crucially depends on the competence of the person who executes the abstraction. This paper describes a new method for abstraction and specialization of natural micro structures for technical lightweight components. The new method generates stable lightweight design principles by using topology optimization within a design space of preselected biological archetypes such as diatoms or radiolarian. The resulting solutions are adapted to the technical load cases and production processes, can be created in a large variety, and may be further optimized e.g. by using parametric optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darwin C. The Origin of Species, Mundus Publishing, 1928.

    Google Scholar 

  2. Nachtigall W. Bionik — Design für funktionelles Gestalten, Springer Verlag, Heidelberg, Germany, 1997. (in German)

    Google Scholar 

  3. Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6, 155–175.

    Article  Google Scholar 

  4. Milwich M, Speck T, Speck O, T. Stegmaier, Planck H. Biomimetics and technical textiles: Solving engineering problems with the help of nature’s wisdom. American Journal of Botany, 2006, 93, 1455–1465.

    Article  Google Scholar 

  5. Ma J F, Chen W Y, Zhao L, Zhao D H. Elastic buckling of bionic cylindrical shells based on bamboo. Journal of Bionic Engineering, 2008, 5, 231–238.

    Article  Google Scholar 

  6. Jiao H, Zhang Y, Chen W. The lightweight design of low RCS pylon based on structural bionics. Journal of Bionic Engineering, 2010, 7, 182–190.

    Article  Google Scholar 

  7. Zhao L, Ma J, Wang T, Xing D. Lightweight design of mechanical structures based on structural bionic methodology. Journal of Bionic Engineering, 2010, 7, 224–231.

    Article  Google Scholar 

  8. Xing D H, Chen W, Zhao L, Ma J F. Structural bionic design for high-speed machine tool working table based on distribution rules of leaf veins. Science China Technological Sciences, 2012, 55, 2091–2098.

    Article  Google Scholar 

  9. Zhao L, Ma J, Chen W, Guo H. Lightweight design and verification of grantry machining center crossbeam based on structural bionics. Journal of Bionic Engineering, 2011, 8, 201–206.

    Article  Google Scholar 

  10. Hamm C, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 2003, 421, 841–843.

    Article  Google Scholar 

  11. Sumper M, Brunner E. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 2006, 16, 17–26.

    Article  Google Scholar 

  12. Hamm C. Kieselalgen als Muster für technische Konstruktionen. BIOSpektrum, 2005, 1, 41–43. (in German)

    Google Scholar 

  13. Hamm C. Evolutionary Light Structure Engineering: Ein Verfahren zur Verbesserung des Strukturleichtbaus, Technical report, Alfred-Wegener-Institut für Polar-und Meeresforschung, 2008. (in German)

    Google Scholar 

  14. Round R E, Crawford R M, Mann D G. The Diatoms, Press Syndicate of the University of Cambridge, Cambridge, 1990.

    Google Scholar 

  15. Smetacek V. A watery arms race. Nature, 2001, 411, 745–745.

    Article  Google Scholar 

  16. Hamm C, Smetacek V. Armor: Why, when and how? In: Falkowski P G, Knoll A H (eds.), Evolution of Primary Producers in the Sea, Elsevier, Amsterdam, 2007, 311–332.

    Chapter  Google Scholar 

  17. Maier M, Schulz J, Thoben K D. Verfahren zur funktionalen Ähnlichkeitssuche technischer Bauteile in 3D-Datenbanken. Datenbank-Spektrum, 2012, 12, 131–140. (in German)

    Article  Google Scholar 

  18. Niebuhr N. Konstruktion von Offshore — Gründungsstrukturen nach Biologischem Leichtbauverfahren. Master’s thesis, University of technology, business and design — Hochschule Wismar, 2010. (in German)

    Google Scholar 

  19. Friedrichs L, Maier M, Hamm C. A new method for exact three-dimensional reconstructions of diatom frustules. Journal of Microscopy, 2012, 248, 208–217.

    Article  Google Scholar 

  20. Nahrendorf M, Badea C, Hedlund L W, Figueiredo J L, Sosnovik D E, Johnson G A, Weissleder R. High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. American Journal of Physiology: Heart and Circulatory Physiology, 2007, 292, H3172–H3178.

    Google Scholar 

  21. Marinello F, Bariani P, Savio E, Horsewell A, De Chiffre L. Critical factors in SEM 3D stereo microscopy. Measurement Science and Technology, 2008, 19, 065705.

    Article  Google Scholar 

  22. Losic D, Pillar R, Dilger T, Mitchell J, Voelcker N. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. Journal of Porous Materials, 2007, 14, 61–69.

    Article  Google Scholar 

  23. Yonath A. X-ray crystallography at the heart of life science. Current Opinion in Structural Biology, 2011, 21, 622–626.

    Article  Google Scholar 

  24. Pierson J, Sani M, Tomova C, Godsave S, Peters P. Toward visualization of nanomachines in their native cellular environment. Histochemistry and Cell Biology, 2009, 132, 253–262.

    Article  Google Scholar 

  25. Gipson D J, Mills P, Wouts R, Grininger M, Vonck J, Kühlbrandt W. Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proceedings of the National Academy of Sciences of USA, 2010, 107, 9164–9169.

    Article  Google Scholar 

  26. Bendsøe M P, Sigmund O. Topology Optimization - Theory, Methods and Applications, Springer-Verlag, New York, 2003.

    MATH  Google Scholar 

  27. Bendsøe M P, Kikuchi N. Generating optimal topologies in optimal design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71, 197–224.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lindby T, Santos J L T. Shape optimization of three-dimensional shell structures with the shape parameterization of a CAD system. Structural and Multidiscipli-nary Optimization, 1999, 18, 126–133.

    Article  Google Scholar 

  29. Van der Auweraer H, Van Langenhove T, Brughmans M, Bosmans I, Masri N, Donders S. Application of mesh morphing technology in the concept phase of vehicle development. International Journal of Vehicle Design, 2007, 43, 281–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, M., Siegel, D., Thoben, K.D. et al. Transfer of Natural Micro Structures to Bionic Lightweight Design Proposals. J Bionic Eng 10, 469–478 (2013). https://doi.org/10.1016/S1672-6529(13)60241-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(13)60241-3

Keywords

Navigation