Skip to main content
Log in

An AuNPs-based electrochemical aptasensor for the detection of 25-hydroxy vitamin D3

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Vitamin D3 (VD3) is the main form of vitamin D and an essential nutrient for maintaining human life. Currently, traditional methods for detecting 25-hydroxyvitamin D3(25(OH)D3) are complex and expensive. In this study, we constructed an accurate, sensitive, simple, and cost-effective label-free biosensor based on an aptamer for the detection of 25(OH)D3. The aptamer-modified sulfhydryl adopted self-assembly as a way to stably immobilize at the glassy carbon electrode (GCE) surface modified by gold nanoparticles (AuNPs). Upon 25(OH)D3 binding to the aptamer, the complexes inhibit electron transfer at the electrode surface, leading to reduced [Fe(CN)6]3−/4− redox peak current. Consequently, the quantity of 25(OH)D3 that interacts with the electrode-bound aptamer correlates with the observed electric current response values. The Aptamer/AuNPs/GCE aptasensor achieved direct and highly sensitive detection of 25(OH)D3 over a wide concentration range (1.0–1000 nM), with a limit of detection of 1.0 nM. At the same time, other molecules with a similar structure, such as 25(OH)D2, Vitamin D3, and Vitamin D2, had lower response interference than 25(OH)D3. Therefore, this biosensor has great potential to become a portable diagnostic device for 25(OH)D3.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S.S. Pukale, A. Mittal, D. Chitkara, Topical application of vitamin D3-loaded hybrid nanosystem to offset imiquimod-induced psoriasis. AAPS PharmSciTech 22(7), 238 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. R. Gupta, S. Kaul, V. Singh et al., Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D3. Sci. Rep. 11(1), 23456 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M.T. Munir, C. Ponce, J.M. Santos et al., VD3 and LXR agonist (T0901317) combination demonstrated greater potency in inhibiting cholesterol accumulation and inducing apoptosis via ABCA1-CHOP-BCL-2 cascade in MCF-7 breast cancer cells. Mol. Biol. Rep. 47(10), 7771–7782 (2020)

    Article  PubMed  Google Scholar 

  4. Y.A. Dulla, Y. Kurauchi, A. Hisatsune et al., Regulatory mechanisms of vitamin D3 on production of nitric oxide and pro-inflammatory cytokines in microglial BV-2 Cells. Neurochem. Res.. Res. 41(11), 2848–2858 (2016)

    Article  CAS  Google Scholar 

  5. B.W. Hollis, J.Q. Kamerud, S.R. Selvaag et al., Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. Clin. Chem.. Chem. 39(3), 529–533 (1993)

    Article  CAS  Google Scholar 

  6. D. Wagner, H.E. Hanwell, R. Vieth, An evaluation of automated methods for measurement of serum 25-hydroxyvitamin D. Clin. Biochem.. Biochem. 42(15), 1549–1556 (2009)

    Article  CAS  Google Scholar 

  7. G. Lazzarino, S. Longo, A.M. Amorini et al., Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants. J. Chromatogr. AChromatogr. A 1527, 43–52 (2017)

    Article  CAS  Google Scholar 

  8. J. Zhou, F. Wang, Y. Ma et al., Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system. Osteoporos Int. Int. 29(8), 1917–1926 (2018)

    Article  CAS  Google Scholar 

  9. L. Maghsoumi-Norouzabad, A. ZareJavid, A. Mansoori et al., Vitamin D3 supplementation effects on spermatogram and oxidative stress biomarkers in asthenozoospermia infertile men: a randomized, triple-blind, placebo-controlled clinical trial. Reprod. Sci.. Sci. 29(3), 823–835 (2022)

    Article  CAS  Google Scholar 

  10. J.H. Lee, J.H. Choi, O.J. Kweon et al., Discrepancy between Vitamin D total immunoassays due to various cross-reactivities. J Bone Metab 22(3), 107–112 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Y. Zhang, N. Li, Y. Xu et al., An ultrasensitive dual-signal aptasensor based on functionalized Sb@ZIF-67 nanocomposites for simultaneously detect multiple biomarkers. Biosens. Bioelectron.. Bioelectron. 214, 114508 (2022)

    Article  CAS  Google Scholar 

  12. Z. Hua, T. Yu, D. Liu et al., Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron.. Bioelectron. 179, 113076 (2021)

    Article  CAS  Google Scholar 

  13. L.C. Bock, L.C. Griffin, J.A. Latham et al., Selection of single-stranded DNA molecules that bind and inhibit human thrombin [J]. Nature 355(6360), 564–566 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818–822 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)

    Article  CAS  PubMed  Google Scholar 

  16. S. Nooranian, A. Mohammadinejad, T. Mohajeri et al., Biosensors based on aptamer-conjugated gold nanoparticles: a review. Biotechnol. Appl. Biochem.. Appl. Biochem. 69(4), 1517–1534 (2022)

    Article  CAS  Google Scholar 

  17. Y. Zhang, B.S. Lai, M. Juhas, Recent advances in aptamer discovery and applications. Molecules 24(5), 941 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  18. G. Marrazza, Aptamer sensors. Biosensors (Basel) 7(1), 5 (2017)

    Article  PubMed  Google Scholar 

  19. Z. Li, M.A. Mohamed, A.M. Vinu Mohan et al., Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: review. Sensors (Basel) 19(24), 5435 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. T. Bystron, E. Sramkova, F. Dvorak et al., Glassy carbon electrode activation – a way towards highly active, reproducible and stable electrode surface. Electrochim. Acta. Acta 299, 963–970 (2019)

    Article  CAS  Google Scholar 

  21. D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasović et al., Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. Eur. Phys J. Plus (2017). https://doi.org/10.1140/epjp/i2017-11307-2

    Article  Google Scholar 

  22. A. Kulpa-Koterwa, T. Ossowski, P. Niedzialkowski, Functionalized Fe(3)O(4) nanoparticles as glassy carbon electrode modifiers for heavy metal ions detection-a mini review. Materials (Basel) 14(24), 7725 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E.H. Jeong, G. Jung, C.A. Hong et al., Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch. Pharm. Res. 37(1), 53–59 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. P. Singh, S.K. Pandey, J. Singh et al., Biomedical perspective of electrochemical nanobiosensor. Nanomicro Lett. 8(3), 193–203 (2016)

    PubMed  Google Scholar 

  26. G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta. Acta 84, 49–61 (2012)

    Article  CAS  Google Scholar 

  27. C.W. Kuo, S.H. Wang, S.C. Lo et al., Sensitive oligonucleotide detection using resonant coupling between fano resonance and image dipoles of gold nanoparticles. ACS Appl. Mater. Interfaces 14(12), 14012–14024 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. X. Zhang, Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem. Biophys.Biochem. Biophys. 72(3), 771–775 (2015)

    Article  CAS  Google Scholar 

  29. B.H. Lee, V.T. Nguyen, M.B. Gu, Highly sensitive detection of 25-HydroxyvitaminD3 by using a target-induced displacement of aptamer. Biosens. Bioelectron.. Bioelectron. 88, 174–180 (2017)

    Article  CAS  Google Scholar 

  30. M. Popenda, M. Szachniuk, M. Antczak et al., Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40(14), e112 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.F. Brocenschi, P. Hammer, C. Deslouis et al., Assessments of the effect of increasingly severe cathodic pretreatments on the electrochemical activity of polycrystalline boron-doped diamond electrodes. Anal. Chem. 88(10), 5363–5368 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. M. Tolba, M.U. Ahmed, C. Tlili et al., A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137(24), 5749–5756 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. S. Wadhwa, A.T. John, S. Nagabooshanam et al., Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surface Sci. 521, 146427 (2020)

    Article  CAS  Google Scholar 

  34. D.J. Patel, A.K. Suri, Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J. Biotechnol.Biotechnol. 74(1), 39–60 (2000)

    CAS  Google Scholar 

  35. D.H. Bunka, P.G. Stockley, Aptamers come of age - at last. Nat. Rev. Microbiol.Microbiol. 4(8), 588–596 (2006)

    Article  CAS  Google Scholar 

  36. H. Ye, Y. Zhou, P. Ma et al., Analysis of the anti-inflammatory effect of the aptamer LA27 and its binding mechanism. Int. J. Biol. Macromol.Macromol. 165(Pt A), 308–313 (2020)

    Article  CAS  Google Scholar 

  37. M. Prante, T. Schuling, B. Roth et al., Characterization of an aptamer directed against 25-hydroxyvitamin D for the development of a competitive aptamer-based assay. Biosensors (Basel) 9(4), 134 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. S. Vemulapati, E. Rey, D. O’Dell et al., A quantitative point-of-need assay for the assessment of vitamin D(3) deficiency. Sci. Rep. 7(1), 14142 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Jo, W. Lee, J. Park et al., Wide-range direct detection of 25-hydroxyvitamin D(3) using polyethylene-glycol-free gold nanorod based on LSPR aptasensor. Biosens. Bioelectron.. Bioelectron. 181, 113118 (2021)

    Article  CAS  Google Scholar 

  40. S. Yin, M.N. Hossain, Y. Li et al., Development of a novel electrochemical aptasensor based on catalytic hairpin assembly and DNA tetrahedron for the detection of 25-hydroxyvitamin D3. Sens. Actuators B: Chem. 354, 13217 (2022)

    Article  Google Scholar 

  41. D. Chauhan, P.R. Solanki, Hydrophilic and Insoluble electrospun cellulose acetate fiber-based biosensing platform for 25-hydroxy vitamin-D3 detection. ACS Appl. Polym. Mater. 1(7), 1613–1623 (2019)

    Article  CAS  Google Scholar 

  42. L. Carlucci, G. Favero, C. Tortolini et al., Several approaches for vitamin D determination by surface plasmon resonance and electrochemical affinity biosensors. Biosens. Bioelectron.. Bioelectron. 40(1), 350–355 (2013)

    Article  CAS  Google Scholar 

  43. A. Giustina, R.A. Adler, N. Binkley et al., Consensus statement from 2(nd) international conference on controversies in vitamin D. Rev. Endocr. Metab. Disord.Endocr. Metab. Disord. 21(1), 89–116 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate school-enterprise joint innovation Project of Central South University (No. 2022XQLH074, 2022XQLH075, and 2022XQLH076) and the Natural Science Foundation of Hunan Province (No. 2022JJ80105).

Funding

Innovation-Driven Project of Central South University, 2022XQLH074, Zheng Wei, 2022XQLH075, Meilun Chen,2022XQLH076, Xiaoling Lu, Natural Science Foundation of Hunan Province, 2022JJ80105, Peng Yu.

Author information

Authors and Affiliations

Authors

Contributions

TC designed and guided the project. MC wrote the manuscript. XL developed the method of electrodeposition. ZW made electrodes. CT and JY characterized the aptamer. YH assisted in revising the manuscript. JZ provided methodological advice. PY provided financial support.

Corresponding author

Correspondence to Peng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Chen, M., Yang, J. et al. An AuNPs-based electrochemical aptasensor for the detection of 25-hydroxy vitamin D3. ANAL. SCI. 40, 599–607 (2024). https://doi.org/10.1007/s44211-023-00489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00489-0

Keywords

Navigation