Skip to main content
Log in

Tools for studying ion solvation and ion pair formation in ionic liquids: isotopic substitution Raman spectroscopy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Isotopic H/D or 6/7Li substitution Raman spectroscopy was applied to new kinds of ionic liquids; N-methylimidazole (C1Im) and acetic acid (CH3COOH) as the pseudo-protic ionic liquid (pPIL), and both of the neat and the 2,2,3,3-tetrafluoropropyl ether (HFE) diluted Li-glyme solvate ionic liquids (SIL) [Li(Gn)][TFSA] (Gn, glyme n = 3 or 4); TFSA, bis(trifluoromethanesulfonyl)amide) to clarify the proton transfer or the Li+ solvation/ion pair formation. The isotopic substitution Raman (ISR) spectra were obtained as the difference between the samples containing the same composition except the substituted isotope. The calculated and theoretical ISR spectra were also evaluated for comparison. With the C1Im–CH3COOH(D) pPIL, the Raman bands attributable to the C1Im/C1HIm+ gave signals of differential shape, and they were well reproduced with the curve fitting by taking the small amount of C1HIm+ and CH3COO generation into consideration. The ISR spectra for the SIL were well explained by the formation of the Li–TFSA contact ion pair (CIP) and the solvent shared ion pair (SSIP) in the [Li(G3)][TFSA] SIL. In addition, the ISR spectra for the HFE-diluted [Li(G4)][TFSA] SIL clearly proved that the HFE hardly coordinates to the Li+ in the HFE-diluted SIL. Here, the ISR spectroscopy is proposed as a new tool for studying the ion solvation and the ion pair formation in ionic liquids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.A. Angell, Y. Ansari, Z. Zhao, Faraday Discuss. 154, 9 (2012)

    Article  Google Scholar 

  2. H. Sakabe, H. Matsumoto, Electrochem. Commun. 5, 594 (2003)

    Article  Google Scholar 

  3. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, N. Terada, J. Phys. Chem. B 110, 10228 (2006)

    Article  CAS  Google Scholar 

  4. L.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Electrochem. Commun. 8, 610 (2006)

    Article  CAS  Google Scholar 

  5. K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J. Park, K. Ueno, S. Seki, N. Serizawa, M. Watanabe, J. Electrochem. Soc. 160, A1304 (2013)

    Article  CAS  Google Scholar 

  6. M.L. Thomas, Y. Oda, R. Tatara, H. Kwon, K. Ueno, K. Dokko, M. Watanabe, Adv. Energy. Mater. 7, 1601753 (2017)

    Article  Google Scholar 

  7. M.A.B.H. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun. 2003, 938 (2003)

    Article  Google Scholar 

  8. C.A. Angell, W. Xu, M. Yoshizawa, A. Hayashi, J.-P. Belieres, P. Lucas, M. Videa, in Electrochemical aspects of ionic liquids, vol. 5, ed. by H. Ohno (Wiley, London, 2005)

    Google Scholar 

  9. H.P. Peediyakkal, J. Yu, H. Munakata, K. Kanamura, Electrochemisty 87, 35 (2019)

    Article  CAS  Google Scholar 

  10. D.E. Smith, D.A. Walsh, Adv. Energy. Mater. 9, 1900744 (2019)

    Article  Google Scholar 

  11. W. Xu, E.I. Cooper, C.A. Angell, J. Phys. Chem. B 107, 6170 (2003)

    Article  CAS  Google Scholar 

  12. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Masayoshi, J. Phys. Chem. B 109, 6103 (2005)

    Article  CAS  Google Scholar 

  13. H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 110, 19593 (2006)

    Article  CAS  Google Scholar 

  14. K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. B 116, 11323 (2012)

    Article  CAS  Google Scholar 

  15. K.R. Harris, M. Kanakubo, Phys. Chem. Chem. Phys. 17, 23977 (2015)

    Article  CAS  Google Scholar 

  16. K.R. Harris, J. Phys. Chem. B 120, 12135 (2016)

    Article  CAS  Google Scholar 

  17. K.R. Harris, M. Kanakubo, J. Phys. Chem. B 120, 12937 (2016)

    Article  CAS  Google Scholar 

  18. K.R. Harris, M. Kanakubo, J. Chem. Eng. Data 61, 2399 (2016)

    Article  CAS  Google Scholar 

  19. M. Yoshizawa, W. Ogihara, H. Ohno, Electrochem. Solid-State Lett. 4, E25 (2001)

    Article  CAS  Google Scholar 

  20. H. Ohno, M. Yoshizawa, Solid State Ionics 154–155, 303 (2002)

    Article  Google Scholar 

  21. H. Doi, X. Song, B. Minofar, R. Kanzaki, T. Takamuku, Y. Umebayashi, Chem. Eur. J. 19, 11522 (2013)

    Article  CAS  Google Scholar 

  22. H. Watanabe, T. Umecky, N. Arai, A. Nazet, T. Takamuku, K.R. Harris, Y. Kameda, R. Buchner, Y. Umebayashi, J. Phys. Chem. B 123, 6244 (2019)

    Article  CAS  Google Scholar 

  23. J. Ingenmey, S. Gehrke, B. Kirchner, Chemsuschem 2018, 11 (1900)

    Google Scholar 

  24. S. Saito, H. Watanabe, Y. Hayashi, M. Matsugami, S. Tsuzuki, S. Seki, J.N.C. Lopes, R. Atkin, K. Ueno, K. Dokko, M. Watanabe, Y. Kameda, Y. Umebayashi, J. Phys. Chem. Lett. 7, 2832 (2016)

    Article  CAS  Google Scholar 

  25. N. Arai, H. Watanabe, T. Yamaguchi, S. Seki, K. Ueno, K. Dokko, M. Watanabe, Y. Kameda, R. Buchner, Y. Umebayashi, J. Phys. Chem. C 123, 30228 (2019)

    Article  CAS  Google Scholar 

  26. M. Kanakubo, T. Ikeda, T. Aizawa, H. Nanjo, Y. Kameda, Y. Amo, T. Usuki, Anal. Sci. 24, 1373 (2008)

    Article  CAS  Google Scholar 

  27. R. Hayes, S. Imberti, G.G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 13, 3237 (2011)

    Article  CAS  Google Scholar 

  28. A. Misiùnas, Z. Talaikytë, G. Niaura, V. Razumas, BIOLOGIJA. 4, 26 (2004)

    Google Scholar 

  29. Y. Kameda, I. Sugawara, K. Kijima, T. Usuki, O. Uemura, Bull. Chem. Soc. Jpn. 68, 512 (1995)

    Article  CAS  Google Scholar 

  30. A. Misiùnas, G. Niaura, Z. Talaikytë, O. Eicher-Lorka, V. Razumas, Spectrochimica Acta Part A 62, 945 (2005)

    Article  Google Scholar 

  31. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  32. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, revision C.01 (Gaussian Inc, Wallingford, 2016)

    Google Scholar 

  33. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 255, 327 (1996)

    Article  CAS  Google Scholar 

  34. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III., W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  35. S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, Chem. Phys. Chem. 14, 1993 (2013)

    Article  CAS  Google Scholar 

  36. N. Arai, E. Nozaki, H. Watanabe, S. Seki, S. Tsuzuki, K. Ueno, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. Lett. 11, 4517 (2020)

    Article  CAS  Google Scholar 

  37. H. Watanabe, N. Arai, J. Han, Y. Kawana, Y. Umebayashi, J. Mol. Liq. 352, 118705 (2022)

    Article  CAS  Google Scholar 

  38. K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 17, 8248 (2015)

    Article  CAS  Google Scholar 

  39. S. Saito, H. Watanabe, K. Ueno, T. Mandai, S. Seki, S. Tsuzuki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. B 120, 3378 (2016)

    Article  CAS  Google Scholar 

  40. Y. Umebayashi, N. Arai, H. Watanabe, Bunseki Kagaku 69, 271 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grants-in-Aid for Scientific Research No.18H01994 and a Research Fellowship No.17J02361 from the Japan Society for the Promotion of Science (JSPS) and JST ALCA-SPRING Grant Number JPMJAL1301, Japan. Raman measurements were recorded at the center for coordination of research facilities in Niigata University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Umebayashi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1965 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H., Arai, N., Han, J. et al. Tools for studying ion solvation and ion pair formation in ionic liquids: isotopic substitution Raman spectroscopy. ANAL. SCI. 38, 1025–1031 (2022). https://doi.org/10.1007/s44211-022-00121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00121-7

Keywords

Navigation