Skip to main content

Advertisement

Log in

Mass Spectrometry-Based Omics and Imaging Technique: A Novel Tool for Molecular Toxicology and Health Impacts

  • Review
  • Published:
Reviews of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mass spectrometry (MS)-based omics and MS imaging (MSI) technique have been adopted as a powerful analytical strategy to investigate the toxicological effect on human health and molecular mechanism of environmental pollutants. In contrast to conventional toxicological methodologies, MS-based omics and MSI technique provides the possibility to analysis a plenty of molecules in qualitative, quantitative and spatial distribution variation including parent compounds and their metabolites as well as related endogenous metabolome, lipidome and proteome. In this perspective, we showcase the progress in MS-based omics analysis and MSI, and highlight sample preparation, high-throughput screening, data mining and more which are critical to the success of acquiring the exogenous exposure-induced molecule profiling variation and effective risk assessment method at the cellular and organ scale. The aim of this review is to contribute to a better understanding of potential molecule toxicity, pathological findings and action mechanisms caused by pollutant exposure, avoiding the environmental damage on human health if possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

AFADESI-MSI:

Ambient air flow-assisted desorption electrospray ionization-mass spectrometry imaging

AP-MALDI MSI:

Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging

AUC:

Area under the curve

BADGE·2HCl:

Bisphenol A bis(3-chloro-2- hydroxypropyl) ether

BPA:

Bisphenol A

BPAP:

Bisphenol AP

BPB:

Bisphenol B

BPE:

Bisphenol E

BPF:

Bisphenol F

BPS:

Bisphenol S

BPs:

Bisphenols (including BPA, BPS, BPF, etc.)

CE-TOF/MS:

Capillary electrophoresis time-of-flight mass spectrometry

CE-MS:

Capillary electrophoresis-mass spectrometry

DESI:

Desorption electrospray ionization

DG:

Diacylglycerol

FFPE:

Formaldehyde-fixated and paraffin-embedded

FT-ICR:

Fourier transform-ion cyclotron resonance

GC–MS:

Gas chromatography mass spectrometry

GLs:

Glycerolipids

GPs:

Glycerophospholipids

IMS:

Ion mobility spectrometry

iTRAQ:

Isobaric tags for relative and absolute quantification

LA-ICP MSI:

Laser ablation inductively coupled plasma mass spectrometry imaging

LC-HRMS:

Liquid chromatography-high resolution mass spectrometry

LC–MS:

Liquid chromatography mass spectrometry

LPC:

Lysophosphatidylcholine

LPE:

Lysophosphatidylethanolamine

MALD:

Matrix-assisted laser desorption ionization

MBP:

4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MSI:

Mass spectrometry imaging

NOAEL:

No-observed adverse effect level

PC:

Phosphatidylcholine

PCA:

Principal component analysis

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositols

PLSA:

Probabilistic latent semantic analysis

PM2.5:

Particulate matters with aerodynamic diameter less than 2.5 μm

ROS:

Reactive oxygen species

SIMS:

Secondary ion mass spectrometry

SM-Cer:

Sphingomyelin-ceramide

TBBPA:

Tetrabromo bisphenol A

TCBPA:

Tetrachloro bisphenol A

TDI:

Tolerable daily intake

TG:

Triacylglycerol

TOF:

Time-of-flight

T2DM:

Type 2 diabetes mellitus

UFPs:

Ultrafine particles

References

  • Aerni HR, Cornett DS, Caprioli RM (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834. https://doi.org/10.1021/ac051534r

    Article  CAS  Google Scholar 

  • Ao JJ, Liu YJ, Tang WF, Zhang J (2022) Bisphenol S exposure induces intestinal inflammation: an integrated metabolomic and transcriptomic study. Chemosphere 292:133510

    Article  CAS  Google Scholar 

  • Arnich N, Canivenc-Lavier MC, Kolf-Clauw M, Coffigny H, Cravedi JP, Grob K, Macherey AC, Masset D, Maximilien R, Narbonne JF, Nesslany F, Stadler J, Tulliez J (2011) Conclusions of the French food safety agency on the toxicity of bisphenol A. Int J Hyg Environ Health 214:271–275

    Article  CAS  Google Scholar 

  • Baralic K, Djordjevic AB, Zivancevic K, Antonijevic E, Anđelkovic M, Javorac D, Curcic M, Bulat Z, Antonijevic B, Đukic-cosic D (2022) Toxic effects of the mixture of phthalates and bisphenol a-subacute oral toxicity study in Wistar rats. Int J Environ Res Publ Health 17:746

    Article  Google Scholar 

  • Barre FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia J, Creemers LP, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA (2019) Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal Chem 91:10840–10848

    Article  CAS  Google Scholar 

  • Becker JS (2013) Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments. J Mass Spectrom 48:255–268

    Article  Google Scholar 

  • Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29:156–175

    Article  CAS  Google Scholar 

  • Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5:e189

    Article  CAS  Google Scholar 

  • Bhandari DR, Schott M, Rompp A, Vilcinskas V, Spengler B (2015) Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius. Anal Bioanal Chem 407:2189–2201

    Article  CAS  Google Scholar 

  • Bich C, Touboul D, Brunelle A (2013) Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue. Mass Spectrom Rev. https://doi.org/10.1002/mas.21399

    Article  Google Scholar 

  • Bielow C, Mastrobuoni G, Orioli M, Kempa S (2017) On mass ambiguities in high-resolution shotgun lipidomics. Anal Chem 89:2986–2994

    Article  CAS  Google Scholar 

  • Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem 3:433–465

    Article  CAS  Google Scholar 

  • Bodein A, Scott-Boyer MP, Perin O, Cao KL, Droit A (2022) Interpretation of network-based integration from multi-omics longitudinal data. Nucleic Acids Res 50:e27

    Article  CAS  Google Scholar 

  • Buchberger AR, DeLaney K, Johnson J, Li LJ (2018) Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem 90:240–265

    Article  CAS  Google Scholar 

  • Chen JC, Schwartz J (2008) Metabolic syndrome and inflammatory responses to long- term particulate air pollutants. Environ Health Perspect 116:612–617

    Article  Google Scholar 

  • Chen YL, Xie YQ, Li LN, Wang ZT, Yang L (2022) Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. Mass Spectrom Rev. https://doi.org/10.1002/mas.21807

    Article  Google Scholar 

  • Dai WN, Tang TT, Dai ZH, Shi D, Mo LY, Zhang YH (2020) Probing the mechanism of hepatotoxicity of hexabromocyclododecanes through toxicological network analysis. Environ Sci Technol 54:15235–15245

    Article  CAS  Google Scholar 

  • Dauchet L, Hulo S, Cherot-Kornobis N, Matran R, Amouyel P, Edmé JL, Giovannelli J (2018) Short-term exposure to air pollution: associations with lung function and inflammatory markers in non-smoking, healthy adults. Environ Int 121:610–619

    Article  CAS  Google Scholar 

  • Diao X, Xie CY, Xie GS, Song YY, Liang YS, Li RJ, Dong C, Zhu L, Wang JN, Cai ZW (2022) Mass spectrometry imaging revealed sulfatides depletion in brain tissues of rats exposed in real air with high fine particulate matter. Environ Sci Technol Lett 9:856–862

    Article  CAS  Google Scholar 

  • Doerr A (2018) Mass spectrometry imaging takes off. Nat Methods 15:32

    Article  CAS  Google Scholar 

  • Domenick TM, Gill EL, Vedam-Mai V, Yost RA (2021) Mass spectrometry-based cellular metabolomics: current approaches, applications, and future directions. Anal Chem 93:546–566

    Article  CAS  Google Scholar 

  • Dong JY, Peng QW, Deng LL, Liu JJ, Huang W, Zhou X, Zhao C, Cai ZW (2022) iMS2Net: a multiscale networking methodology to decipher metabolic synergy of organism. iScience 25:104896

    Article  CAS  Google Scholar 

  • Duan YS, Sun HW, Yao YM, Han LP, Chen LM (2021) Perturbation of serum metabolome in relation to type 2 diabetes mellitus and urinary levels of phthalate metabolites and bisphenols. Environ Int 155:106609

    Article  CAS  Google Scholar 

  • Dubuis S, Baenke F, Scherbichler N, Alexander LT, Schulze A, Zamboni N (2017) Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics. Metab Eng 43:173–186

    Article  CAS  Google Scholar 

  • Eberlin LS, Norton I, Orringer D, Dunn IF, Liu XH, Ide JL, Jarmusch AK, Ligon KL, Jolesz FA, Golby AJ, Santagata S, Agar NYR, Cooks RG (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. P Natl Acad Sci USA 29:1611–1616

    Article  Google Scholar 

  • Ellis SR, Soltwisch J, Paine MRL, Dreisewerd K, Heeren RMA (2017) Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem Commun 53:7246–7249

    Article  CAS  Google Scholar 

  • Eriksson JO, Rezeli M, Hefner M, Marko-Varga G, Horvatovich P, Peak C (2019) Detection and filtering based on spatial distribution to efficiently mine mass spectrometry imaging data. Anal Chem 91:11888–11896

    Article  CAS  Google Scholar 

  • Feider CL, Krieger A, Dehoog RJ, Eberlin LS (2019) Ambient ionization mass spectrometry: recent developments and applications. Anal Chem 91:4266–4290

    Article  CAS  Google Scholar 

  • Fenichel P, Chevalier N, Brucker-Davis F (2013) Bisphenol A: an endocrine and metabolic disruptor. Ann Endocrinol 74:211–220

    Article  CAS  Google Scholar 

  • Fessenden M (2016) Metabolomics: Small molecules, single cells. Nature 540:153–155

    Article  CAS  Google Scholar 

  • Fletcher JS, Lockyer NP, Vickerman JC (2010) Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom Rev. https://doi.org/10.1002/mas.20275

    Article  Google Scholar 

  • Gayrard V, Lacroix MZ, Collet SH, Viguié C, Bousquet-Melou A, Toutain PL, Picard-Hagen N (2013) High bioavailability of bisphenol A from sublingual exposure. Environ Health Perspect 121:951–956

    Article  Google Scholar 

  • Gill EL, Koelmel JP, Yost RA, Okun MS, Vedam-Mai V, Garrett TJ (2018) Mass spectrometric methodologies for investigating the metabolic signatures of parkinson’s disease: current progress and future perspectives. Anal Chem 90:2979–2986

    Article  CAS  Google Scholar 

  • Goodwin RJA, Pennington SR, Pitt AR (2008) Protein and peptides in pictures: imaging with MALDI mass spectrometry. Proteomics 8:3785–3800

    Article  CAS  Google Scholar 

  • Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, Koellensperger G, Huan T, Uritboonthai W, Aisporna AE, Wolan DW, Spilker ME, Benton HP, Siuzdak G (2018) METLIN: A technology platform for identifying knowns and unknowns. Anal Chem 90:3156–3164

    Article  CAS  Google Scholar 

  • Guo L, Hu ZX, Zhao C, Xu XN, Wang SJ, Xu JJ, Dong JY, Cai ZW (2021) Data filtering and its prioritization in pipelines for spatial segmentation of mass spectrometry imaging. Anal Chem 93:4788–4793

    Article  CAS  Google Scholar 

  • Guo L, Liu XX, Zhao C, Hu ZX, Xu XN, Cheng KK, Zhou P, Xiao Y, Shah M, Xu JJ, Dong JY, Cai ZW (2022a) iSegMSI: an interactive strategy to improve spatial segmentation of mass spectrometry imaging data. Anal Chem 94:14522–14529

    Article  CAS  Google Scholar 

  • Guo WJ, Shi Z, Zeng T, He Y, Cai ZW, Zhang JL (2022b) Metabolic study of aristolochic acid I-exposed mice liver by atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging and machine learning. Talanta 241:123261

    Article  CAS  Google Scholar 

  • Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37:99–105

    Google Scholar 

  • Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  Google Scholar 

  • Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P (2019) Imaging of protein distribution in tissues using mass spectrometry: an interdisciplinary challenge. TrAC-Trend Anal Chem 112:13–28

    Article  CAS  Google Scholar 

  • He JM, Sun CL, Li TG, Luo ZG, Huang LJ, Song XW, Li X, Abliz Z (2018) A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology. Adv Sci 5:1800250

    Article  Google Scholar 

  • Hong X, Wang GF, Liu XC, Wu M, Zhang XD, Hua XH, Jiang PP, Wang S, Tang S, Shi XM, Huang YC, Shen T (2022) Lipidomic biomarkers: potential mediators of associations between urinary bisphenol A exposure and colorectal cancer. J Hazard Mater 427:127863

    Article  CAS  Google Scholar 

  • Horvath P, Aulner N, Bickle M, Davies AM, Del Nery E, Ebner D, Montoya MC, Östlin P, Pietiaïnen V, Price LS, Shorte SL, Turcatti G, Schantz CV, Carragher NO (2016) Screening out irrelevant cell-based models of disease. Nat Rev Drug Discovery 15:751–769

    Article  CAS  Google Scholar 

  • Hu WX, Lazar MA (2022) Modelling metabolic diseases and drug response using stem cells and organoids. Nat Rev End 18:744–759

    Google Scholar 

  • Huang QY, Hu D, Wang X, Chen Y, Wu Y, Pan L, Li H, Zhang J, Deng F, Guo X, Shen HQ (2018a) The modification of indoor PM2.5 exposure to chronic obstructive pulmonary disease in Chinese elderly people: a meet-in-metabolite analysis. Environ Int 121:1243–1252

    Article  CAS  Google Scholar 

  • Huang TJ, Armbruster MR, Coulton JB, Edwards JL (2018b) Chemical tagging in mass spectrometry for systems biology. Anal Chem 91:109–125

    Article  Google Scholar 

  • Huang X, Zhan LP, Sun J, Xue JJ, Liu HH, Xiong CQ, Nie ZX (2018c) Utilizing a mini-humidifier to deposit matrix for MALDI imaging. Anal Chem 90:8309–8313

    Article  CAS  Google Scholar 

  • Huang H, Ouyang D, Lin ZA (2022) Recent advances in surface-assisted laser desorption/ionization mass spectrometry and its imaging for small molecules. J Anal Test 6:217–234

    Article  Google Scholar 

  • Irfan Maqsood M, Matin MM, Bahrami AR, Ghasroldasht MM (2013) Immortality of cell lines: challenges and advantages of establishment. Cell Biol Int 37:1038–1045

    Article  Google Scholar 

  • Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG (2016) Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. P Natl Acad Sci USA 113:1486–1491

    Article  CAS  Google Scholar 

  • Jaroch K, Taczyńska P, Czechowska M, Bogusiewicz J, Łuczykowski K, Burlikowska K, Bojko B (2021) One extraction tool for in vitro-in vivo extrapolation? SPME-based metabolomics of in vitro 2D, 3D, and in vivo mouse melanoma models. J Pharm Anal 11:667–674

    Article  Google Scholar 

  • Jaskolla TW, Karas M, Roth U, Steinert K, Menzel C, Reihs K (2009) Comparison between vacuum sublimed matrices and conventional dried droplet preparation in MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 20:1104–1114

    Article  CAS  Google Scholar 

  • Jia SL, Li C, Fang ML, Santos MMD, Snyder SA (2022) Non-targeted metabolomics revealing the effects of bisphenol analogues on human liver cancer cells. Chemosphere 297:134088

    Article  CAS  Google Scholar 

  • Jiang YM, Sun J, Xiong CQ, Liu HH, Li YZ, Wang X, Nie ZX (2021) Mass spectrometry imaging reveals in situ behaviors of multiple components in aerosol particles. Angew Chem Int Ed 60:23225–23231

    Article  CAS  Google Scholar 

  • Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B (2017) Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics. TrAC-Trends Anal Chem 86:276–289

    Article  CAS  Google Scholar 

  • Kawai T, Ota N, Okada K, Imasato A, Owa Y, Morita M, Tada M, Tanaka Y (2019) Ultrasensitive single cell metabolomics by capillary electrophoresis-mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration. Anal Chem 91:10564–10572

    Article  CAS  Google Scholar 

  • Khalil SM, Rompp A, Pretzel J, Becker K, Spengler B (2015) Phospholipid topography of whole-body sections of the Anopheles stephensi Mosquito, characterized by high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 87:11309–11316

    Article  CAS  Google Scholar 

  • Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, Beecher CWW, Garrett TJ, Yost RA (2017) LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinf 18:331

    Article  Google Scholar 

  • Koelmel JP, Cochran JA, Ulmer CA, Levy AJ, Patterson RE, Olsen BC, Yost RA, Bowden JA, Garrett TJ (2019) Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinf 20:217

    Article  Google Scholar 

  • Kompauer M, Heiles S, Spengler B (2016) Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods 14:90–96

    Article  Google Scholar 

  • Kovacic P (2010) How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med Hypotheses 75:1–4

    Article  CAS  Google Scholar 

  • Lagarrigue M, Caprioli RM, Pineau C (2016) Potential of MALDI imaging for the toxicological evaluation of environmental pollutants. J Proteomics 144:133–139

    Article  CAS  Google Scholar 

  • Laurent O, Hu J, Li L (2016) Low birth weight and air pollution in California: which sources and components drive the risk? Environ Int 92–93:471–477

    Article  Google Scholar 

  • Lelieveld J, Klingmuller K, Pozzer A, Poschl U, Fnais M, Daiber A, Münzel T (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596

    Article  CAS  Google Scholar 

  • Li TT, Fang JL, Tang S, Du H, Zhao L, Wang YW, Deng FC, Liu YY, Du YJ, Cui LL, Shi WY, Wang Y, Wang JN, Zhang YJ, Dong XY, Gao Y, Shen Y, Dong L, Zhou HC, Sun QH, Dong HR, Peng XM, Zhang Y, Cao M, Zhi H, Zhou JY, Shi XM (2022) PM2.5 exposure associated with microbiota gut-brain axis multi-omics mechanistic implications from the BAPE study. Innovation 3:100213

    CAS  Google Scholar 

  • Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR (2019) Mediterranean diet and the association between air pollution and cardiovascular disease mortality risk. Circulation 139:1766–1775

    Article  CAS  Google Scholar 

  • Lim SA, Su W, Chapman NM, Chi H (2022) Lipid metabolism in T cell signaling and function. Nat Chem Bio 18:470–481

    Article  CAS  Google Scholar 

  • Liu S, Ganduglia CM, Li X, Delclos GL, Franzini L, Zhang K (2016) Fine particulate matter components and emergency department visits among a privately insured population in Greater Houston. Sci Total Environ 566–567:521–527

    Article  Google Scholar 

  • Liu C, Chen R, Sera F (2019) Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 381:705–715

    Article  CAS  Google Scholar 

  • Liu RJ, Xia SJ, Li HL (2022a) Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. Mass Spectrom Rev. https://doi.org/10.1002/mas.21793

    Article  Google Scholar 

  • Liu YJ, Tang W, Ao J, Zhang J, Feng JP (2022b) Transcriptomics integrated with metabolomics reveals the effect of Bisphenol F (BPF) exposure on intestinal inflammation. Sci Total Environ 816:151644

    Article  CAS  Google Scholar 

  • Ljungman PLS, Li W, Rice MB, Wilker EH, Schwartz J, Gold DR, Koutrakis P, Benjamin EJ, Vasan RS, Mitchell GF, Hamburg NM, Mittleman MA (2018) Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. Environ Int 121:139–147

    Article  CAS  Google Scholar 

  • Luo ZG, He JM, Chen Y, He JJ, Gong T, Tang F, Wang XH, Zhang RP, Huang Z, Zhang LF, Lv HN, Ma SG, Fu ZD, Chen XG, Yu SS, Abliz Z (2013) Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal Chem 85:2977–2982

    Article  CAS  Google Scholar 

  • Mao LL, Fang SH, Zhao MR, Liu WP, Jin HB (2021) Effects of bisphenol A and bisphenol s exposure at low doses on the metabolome of adolescent male sprague-dawley rats. Chem Res Toxicol 34:1578–1587

    Article  CAS  Google Scholar 

  • Marqueno A, Perez-Albaladejo E, Denslow ND, Bowden JA, Portea C (2021) Untargeted lipidomics reveals the toxicity of bisphenol A bis(3-chloro-2- hydroxypropyl) ether and bisphenols A and F in zebrafish liver cells. Ecotoxicol Environ Saf 219:112311

    Article  CAS  Google Scholar 

  • Martínez R, Navarro-Martín L, van Antro M, Fuertes I, Casado M, Barata C, Pina B (2020) Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage. Chemosphere 246:125704

    Article  Google Scholar 

  • McDonnell L, Aichler M, Walch A (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11:1428–1443

    Article  Google Scholar 

  • Michałowicz J (2014) Bisphenol A-Sources, toxicity and biotransformation. Environ Toxicol Phar 37:738–758

    Article  Google Scholar 

  • Mill J, Li LJ (2022) Recent advances in understanding of Alzheimer’s disease progression through mass spectrometry-based metabolomics. Phenomics 2:1–17

    Article  Google Scholar 

  • Mirabelli P, Coppola L, Salvatore M (2019) Cancer cell lines are useful model systems for medical research. Cancers 11:1098

    Article  CAS  Google Scholar 

  • Müller C, Junker J, Bracher F, Giera M (2019) A gas chromatography-mass spectrometry-based whole-cell screening assay for target identification in distal cholesterol biosynthesis. Nat Protoc 14:2546–2570

    Article  Google Scholar 

  • Nassan FL, Wang CC, Kelly RS, Lasky-Su JA, Vokonas PS, Koutrakis P, Schwartz JD (2021) Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures. Environ Int 151:106447

    Article  CAS  Google Scholar 

  • Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K (2015) Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93

    Article  CAS  Google Scholar 

  • Nguyen HT, Yamamoto K, Iida M, Agusa T, Ochiai M, Guo J, Karthikraj R, Kannan K, Kim EY, Iwata H (2020) Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring. Sci Total Environ 720:137568

    Article  CAS  Google Scholar 

  • Niehaus M, Soltwisch J, Belov ME, Dreisewerd K (2019) Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods 16:925–931

    Article  CAS  Google Scholar 

  • Ongay S, Langelaar-Makkinje M, Stoop MP, Liu N, Overkleeft H, Luider TM, Groothuis GMM, Bischoff R (2018) Cleavable crosslinkers as tissue fixation reagents for proteomic analysis. Chem Bio Chem 19:736–743

    Article  CAS  Google Scholar 

  • Pang ZQ, Chong J, Zhou G, Morais DAL, Chang L, Barrette M, Gauthier C, Jacques P, Li S, Xia JG (2021a) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396

    Article  CAS  Google Scholar 

  • Pang XC, Gao SS, Ga M, Zhang J, Luo ZQ, Chen YH, Zhang RP, He JM, Abliz Z (2021b) Mapping metabolic networks in the brain by ambient mass spectrometry imaging and metabolomics. Anal Chem 93:6746–6754

    Article  CAS  Google Scholar 

  • Pașca SP, Arlotta P, Bateup HS, Camp JG, Cappello S, Gage FH, Knoblich JA, Kriegstein AR, Lancaster MA, Ming GL, Muotri AR, Park IH, Reiner O, Song HJ, Studer L, Temple S, Testa G, Treutlein B, Vaccarino FM (2022) A nomenclature consensus for nervous system organoids and assembloids. Nature 609:907–910

    Article  Google Scholar 

  • Pati S, Nie B, Arnold RD, Cummings BS (2016) Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed Chromatogr 30:695–709

    Article  CAS  Google Scholar 

  • Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooksa RG (2017) Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. P Natl Acad Sci USA 27:6700–6705

    Article  Google Scholar 

  • Race AM, Palmer AD, Dexter A, Steven RT, Styles IB, Bunch J (2016) Spectral Analysis: software for the Masses. Anal Chem 88:94519458

    Article  Google Scholar 

  • Rajagopalan S, Al-Kindi SG, Brook RD (2018) Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 72:2054–2070

    Article  CAS  Google Scholar 

  • Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Bio 20:353–367

    Article  CAS  Google Scholar 

  • Rustam YH, Reid GE (2018) Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem 90:374–397

    Article  CAS  Google Scholar 

  • Sharma R, Vishwakarma R, Varjani S, Gautam K, Gaur VK, Farooqui A, Sindhu R, Binod P, Awasthi MK, Chaturvedi P, Pandey A (2022) Multi-omics approaches for remediation of bisphenol A: toxicity, risk analysis, road blocks and research perspectives. Environ Res 215:114198

    Article  CAS  Google Scholar 

  • Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AHM, Murphy RC, Raetz CRH, Russell DW, Subramaniam S (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:D527–D532

    Article  CAS  Google Scholar 

  • Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  CAS  Google Scholar 

  • Tchen R, Tan YR, Barr DB, Ryan B, Tran Y, Li ZJ, Hu YJ, Smith AK, Jones DP, Dunlop AL, Liang DH (2022) Use of high-resolution metabolomics to assess the biological perturbations associated with maternal exposure to Bisphenol A and Bisphenol F among pregnant African American women. Environ Int 169:107530

    Article  CAS  Google Scholar 

  • Teo CC, Chong WPK, Tan E, Basri NB, Low ZJ, Ho YS (2015) Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC-Trends Anal Chem 66:1–18

    Article  CAS  Google Scholar 

  • Ung CY, Bari MG, Zhang C, Liang JJ, Correia C, Li H (2019) Regulostat Inferelator: a novel network biology platform to uncover molecular devices that predetermine cellular response phenotypes. Nucleic Acids Res 47:e82

    Article  CAS  Google Scholar 

  • Verbeeck N, Caprioli RM, de Plas RV (2019) Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom Rev. https://doi.org/10.1002/mas.21602

    Article  Google Scholar 

  • Wang HJ, Li B, Zhang M, Chai CF, Li X, Li N, Xiao H, Bian W (2022a) Mass spectrometry and mass spectrometry imaging-based thyroid cancer analysis. J Anal Test 6:235–246

    Article  Google Scholar 

  • Wang JW, Lin L, Huang J, Zhang J, Duan JC, Guo XB, Wu SW, Sun ZW (2022b) Impact of PM2.5 exposure on plasma metabolome in healthy adults during air pollution waves: a randomized, crossover trial. J Hazard Mater 436:129180

    Article  CAS  Google Scholar 

  • Winkler J, Liu PY, Phong K, Hinrichs JH, Ataii N, Williams K, Hadler-Olsen E, Samson S, Gartner ZJ, Fisher S, Werb Z (2022) Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. P Natl Acad Sci USA 119:e2115308119

    Article  CAS  Google Scholar 

  • Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed 45:7188–7192

    Article  CAS  Google Scholar 

  • Xia JG, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660

    Article  CAS  Google Scholar 

  • Yoshihara S, Makishima M, Suzuki N, Ohta S (2001) Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol Sci 62:221–227

    Article  CAS  Google Scholar 

  • Zeng J, Kuang H, Hu XZ, Shi XZ, Yan M, Xu LG, Wang LB, Xu CL, Xu GW (2013) Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. Environ Sci Technol 47:7457–7465

    Article  CAS  Google Scholar 

  • Zhang L, Allworth LL, Vertes A (2020a) Identification of metabolites in single cells by ion mobility separation and mass spectrometry. In: Shrestha B (ed) Single cell metabolism: methods in molecular biology. Springer, New York, pp 9–18

    Chapter  Google Scholar 

  • Zhang JY, Liang S, Ning R, Jiang JJ, Zhang J, Shen HQ, Chen R, Duan JC, Sun ZW (2020b) PM25-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis. Environ Int 136:105444

    Article  CAS  Google Scholar 

  • Zhao C, Cai ZW (2020) Three-dimensional quantitative mass spectrometry imaging in complex system: from subcellular to whole organism. Mass Spectrom Rev. https://doi.org/10.1002/mas.21674

    Article  Google Scholar 

  • Zhao C, Tang Z, Yan JC, Fang J, Wang HL, Cai ZW (2017) Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis. Sci Total Environ 592:357–365

    Article  CAS  Google Scholar 

  • Zhao C, Xie PS, Yong T, Wang HL, Chung ACK, Cai ZW (2018a) MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol S-induced nephrotoxicity. Anal Chem 90:3196–3204

    Article  CAS  Google Scholar 

  • Zhao C, Xie PS, Yang T, Wang HL, Chung ACK, Cai ZW (2018b) Identification of glycerophospholipid fatty acid remodeling by using mass spectrometry imaging in bisphenol S induced mouse liver. Chinese Chem Lett 29:1281–1283

    Article  CAS  Google Scholar 

  • Zhao C, Tang Z, Xie PS, Chung ACK, Cai ZW (2019a) Immunotoxic potentials of bisphenol F mediated through lipid signaling pathways on macrophages. Environ Sci Technol 53:11420–11428

    Article  CAS  Google Scholar 

  • Zhao C, Tang Z, Chung ACK, Wang HL, Cai ZW (2019b) Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicol Environ Saf 170:495–501

    Article  CAS  Google Scholar 

  • Zhao C, Zhu L, Li RJ, Wang HL, Cai ZW (2019c) Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells. Environ Pollut 246:45–52

    Article  CAS  Google Scholar 

  • Zhao C, Yong T, Zhang YB, Jin YF, Xiao Y, Wang HL, Zhao B, Cai ZW (2020) Evaluation of the splenic injury following exposure of mice to bisphenol S: a mass spectrometry-based lipidomics and imaging analysis. Environ Int 135:105378

    Article  CAS  Google Scholar 

  • Zhao C, Yong T, Zhang YB, Xiao Y, Jin YF, Zheng C, Nirasawa T, Cai ZW (2021a) Breast cancer proliferation and deterioration-associated metabolic heterogeneity changes induced by exposure of bisphenol S, a widespread replacement of bisphenol A. J Hazard Mater 414:125391

    Article  CAS  Google Scholar 

  • Zhao C, Xie PS, Yong T, Huang W, Liu JJ, Wu DS, Ji FF, Li M, Zhang DD, Li RJ, Dong C, Ma J, Dong Z, Liu SJ, Cai ZW (2021b) Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci Bull 66:578–591

    Article  CAS  Google Scholar 

  • Zhao C, Guo L, Dong J, Cai Z (2021c) Mass spectrometry imaging-based multi-modal technique: the next-generation of biochemical analysis strategy. The Innovation 2:100151

    Article  CAS  Google Scholar 

  • Zhao C, Dong JY, Deng LL, Tan YW, Jiang W, Cai ZW (2022a) Molecular network strategy in multi-omics and mass spectrometry imaging. Curr Opin Chem Biol 70:102199

    Article  CAS  Google Scholar 

  • Zhao HD, Liu M, Lv YB, Fang ML (2022b) Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure. Environ Int 158:106893

    Article  CAS  Google Scholar 

  • Zhao L, Fang JL, Tang S, Deng F, Liu XH, Shen Y, Liu YY, Kong F, Du YJ, Cui LL, Shi WY, Wang Y, Wang JN, Zhang YJ, Dong XY, Gao Y, Dong L, Zhou HC, Sun QH, Dong HR, Peng XM, Zhang Y, Cao M, Wang YW, Zhi H, Du H, Zhou JY, Li TT, Shi XM (2022c) PM2.5 and serum metabolome and insulin resistance, potential mediation by the gut microbiome: a population-based panel study of older adults in China. Environ Health Perspect. https://doi.org/10.1289/EHP9688

    Article  Google Scholar 

  • Zhu YR, Wang F, Han JT, Zhao YL, Miao Yu, Ma MY, Yu ZG (2023) Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats. J Pharm Anal 13:73–87

    Article  Google Scholar 

  • Zuurbier M, Hoek G, Oldenwening M, Meliefste K, Krop E, van den Hazel P, Brunekreef B (2011) In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults. Environ Health Perspect 119:1384–1389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research Program of China (2018YFA0901104), the National Natural Science Foundation of China (22176195), the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression (ZDSYS20220606100606014), the Guangdong Province Zhu Jiang Talents Plan (2021QN02Y028), the Natural Science Foundation of Guangdong Province, China (2021A1515010171), the Key Program of Fundamental Research in Shenzhen (JCYJ20210324115811031), the Sustainable Development Program of Shenzhen (KCXFZ202002011008124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhao or Zongwei Cai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Cai, Z. Mass Spectrometry-Based Omics and Imaging Technique: A Novel Tool for Molecular Toxicology and Health Impacts. Reviews Env.Contamination (formerly:Residue Reviews) 261, 10 (2023). https://doi.org/10.1007/s44169-023-00032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44169-023-00032-2

Keywords

Navigation