Skip to main content
Log in

Density functional theory investigation of photoelectric conversion in graphene quantum dot/Ir(III) complex nanocomposites: the influence of π-conjugation in cyclometalating ligands

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT), this study investigates the photoelectric performance of nanocomposites formed by coupling graphene quantum dots (GQDs) with Ir(III) complexes. The goal is to evaluate the influence of different π-conjugation levels in cyclometalating ligands and determine the most efficient ligand for energy conversion in the nanocomposite. The analysis covers seven distinct Ir(III) complexes, each featuring a common bpy ligand but differing diimine ligands. These complexes are linked to GQDs through amide connections. The study comprehensively examines electronic structure, absorption spectra, charge transfer, and chemical reactivity. Our results show that increased ligand π-conjugation causes a redshift in the absorption spectrum due to smaller highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps, ultimately enhancing light harvesting. This effect becomes more pronounced when GQDs are incorporated. For less-conjugated ligands, attaching GQDs enhances metal-to-ligand charge transfer, facilitating electron injection into TiO2. Moreover, higher conjugation and GQD coupling reduce chemical hardness while increasing chemical potential and electrophilicity, thus improving electron acceptance. Furthermore, strategic structural variations modify free energy changes for electron injection and ground-state regeneration. Notable is the inclusion of perylene and pyrene moieties in the ligand, which accelerates injection and extends recombination lifetimes, while GQD incorporation accelerates injection across all ligands. Additionally, photocurrent generation primarily influences energy conversion efficiency. Finally, adding GQDs enhances the first-order hyperpolarizability, further boosting light harvesting. This study demonstrates the potential of tuning ligand π-conjugation and GQD interfaces to optimize optoelectronic properties and charge transfer dynamics, thereby enhancing solar energy conversion in GQD/Ir(III) complex systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishak, N., Salleh, H., Rahman, S. A., Dagang, A. N., Kamarulzaman, N. H., Ahmad, Z., Abd Majid, S. N., & Ghazali, S. M. (2020). Application of conjugated chlorophyll from natural dye (imperata cylindrica) to apply in hybrid DSSC as third generation solar energy. Solid State Phenomena, 301, 135–144.

    Google Scholar 

  2. Gregg, B. A. (2003). Excitonic solar cells. The Journal of Physical Chemistry B, 63, 25.

    Google Scholar 

  3. Wu, J., Lin, J., Huang, M., Huang, M., Huang, Y., Luo, G.-G., Lin, Y., Xie, Y., Wei, Y., & Wei, Y. (2017). Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews., 6, 9.

    Google Scholar 

  4. O’Regan, B. C., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740.

    CAS  Google Scholar 

  5. Jo, H. J., Nam, J. E., Heo, H., Kim, D.-H., Kim, J., & Kang, J. K. (2018). Mechanistic and time resolved single-photon counting analysis for light harvesting characteristics depending on the adsorption mode of organic sensitizers in DSSCs. The Journal of Physical Chemistry C, 122, 995–1002.

    CAS  Google Scholar 

  6. Yang, J., Wang, X., Yim, W.-L., & Wang, Q. (2015). Computational study on the intramolecular charge separation of DA-π-A organic sensitizers with different linker groups. The Journal of Physical Chemistry C, 119, 26355–26361.

    CAS  Google Scholar 

  7. Li, H., Wu, Y., Geng, Z., Liu, J., Xu, D., & Zhu, W. (2014). Co-sensitization of benzoxadiazole based D-A–π–A featured sensitizers: Compensating light-harvesting and retarding charge recombination. Journal of Materials Chemistry A, 2, 14649–14657.

    CAS  Google Scholar 

  8. Patil, K., Rashidi, S., Wang, H., & Wei, W. (2019). Recent progress of graphene-based photoelectrode materials for dye-sensitized solar cells. International Journal of Photoenergy., 2, 2.

    Google Scholar 

  9. Huang, T., Zhang, X., Wang, H., Chen, X.-T., Wen, L., Huang, M., Zhong, Y., Luo, H. Z., Tang, G., & Zhou, L. (2019). Improved CdS QDSSCs with graphene and anatase-rutile TiO2 composite as photoanodes. Superlattices and Microstructures., 25, 76.

    Google Scholar 

  10. Sung, S. J., Kim, J. H., Gihm, S. H., Park, J., Cho, Y. S., Yang, S. J., & Park, C. R. (2019). Revisiting the role of graphene quantum dots in ternary organic solar cells: Insights into the nanostructure reconstruction and effective forster resonance energy transfer. ACS Applied Energy Materials, 2, 8826–8835.

    CAS  Google Scholar 

  11. Van Tam, T., Altahtamouni, T., Le Minh, V., Ha, H. K. P., Chung, N. T. K., & Van Thuan, D. (2019). One-pot microwave-assisted green synthesis of amine-functionalized graphene quantum dots for high visible light photocatalytic application. Comptes Rendus Chimie, 22, 822–828.

    Google Scholar 

  12. Jiang, Y., Chen, Y., Zhang, B., & Feng, Y. (2016). N, La Co-doped TiO2for use in low-temperature-based dye-sensitized solar cells. Journal of the Electrochemical Society., 85, 74.

    Google Scholar 

  13. Maeda, N., Hata, H., Osada, N., Shen, Q., Toyoda, T., Kuwahara, S., & Katayama, K. (2013). Carrier dynamics in quantum-dot sensitized solar cells measured by transient grating and transient absorption methods. Physical Chemistry Chemical Physics., 2, 2.

    Google Scholar 

  14. Salam, Z., Vijayakumar, E., Subramania, A., Sivasankar, N., & Mallick, S. (2015). Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 143, 250–259.

    CAS  Google Scholar 

  15. Wang, Y., Bao, P., Wang, J., Jia, R., Bai, F.-Q., & Zhang, H.-X. (2019). Correction to “comprehensive investigation into luminescent properties of Ir(III) complexes: An integrated computational study of radiative and nonradiative decay processes.” Inorganic Chemistry, 58, 4699–4699.

    CAS  PubMed  Google Scholar 

  16. Bai, F.-Q., Wang, J., Xia, B.-H., Pan, Q.-J., & Zhang, H.-X. (2012). DFT and TD-DFT study on the electronic structures and phosphorescent properties of 6-phenyl-2, 2′-bipyridine tridentate iridium (III) complexes and their isomer. Dalton Transactions, 41, 8441–8446.

    CAS  PubMed  Google Scholar 

  17. Teymourinia, H., Salavati-Niasari, M., Amiri, O., & Farangi, M. (2018). Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. Journal of Molecular Liquids, 251, 267–272.

    CAS  Google Scholar 

  18. Qian, X., Yan, R., Hang, Y., Lv, Y., Zheng, L., Xu, C., & Hou, L. (2017). Indeno[1,2-b]indole-based organic dyes with different acceptor groups for dye-sensitized solar cells. Dyes and Pigments, 139, 274–282.

    CAS  Google Scholar 

  19. Xie, M., Bai, F., Zhang, H.-X., & Zheng, Y. (2016). The influence of an inner electric field on the performance of three types of Zn-porphyrin sensitizers in dye sensitized solar cells: A theoretical study. Journal of Materials Chemistry C, 4, 10130–10145.

    CAS  Google Scholar 

  20. Tamayo, A. B., Alleyne, B., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N., Bau, R., & Thompson, M. C. (2003). Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. Journal of the American Chemical Society., 8, 26.

    Google Scholar 

  21. You, Y., & Nam, W. (2012). Photofunctional Triplet excited states of cyclometalated Ir(iii) complexes: Beyond electroluminescence. Chemical Society Reviews., 2, 2.

    Google Scholar 

  22. Sun, J., Wu, W., & Zhao, J. (2012). Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated IrIII complexes and its application in triplet-triplet annihilation-based upconversion. Chemistry A European Journal, 2, 5.

    Google Scholar 

  23. Colombo, M. G., Hauser, A. W., & Guedel, H. U. (1993). Evidence for strong mixing between the LC and MLCT excited states in bis(2-phenylpyridinato-C2, N’)(2,2’-bipyridine)iridium(III). Inorganic Chemistry, 32, 3088–3092.

    CAS  Google Scholar 

  24. Li, Z., Cui, P., Wang, C., Kilina, S. V., & Sun, W. (2014). Nonlinear absorbing cationic bipyridyl iridium(III) complexes bearing cyclometalating ligands with different degrees of π-conjugation: Synthesis, photophysics, and reverse saturable absorption. Journal of Physical Chemistry C, 118, 28764–28775.

    CAS  Google Scholar 

  25. Cui, P., & Xue, Y. (2023). Investigation of photocatalytic performance of GQD/Ir (III) complex nanocomposite: Effect of π-conjugation. Journal of Alloys and Compounds, 960, 170668.

    CAS  Google Scholar 

  26. Cui, P., & Zhang, J. (2023). Investigation of the photocatalytic properties of Ir (III) complex-graphene quantum dot nanocomposites using density functional theory calculations. Diamond and Related Materials, 2, 109906.

    Google Scholar 

  27. Li, Y., Zhang, W., Li, X., & Xu, Y. (2021). Boosting the photoelectric conversion efficiency of DSSCs through graphene quantum dots: Insights from theoretical study. Materials Chemistry Frontiers, 5, 5814–5825.

    CAS  Google Scholar 

  28. Neese, F. (2011) The ORCA program system. Wiley Interdisciplinary Reviews Computational Molecular Science.

  29. Neese, F. (2017) Software update: The ORCA program system, version 4.0. Wiley Interdisciplinary Reviews Computational Molecular Science.

  30. Becke, A. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648.

    CAS  Google Scholar 

  31. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37, 785.

    CAS  Google Scholar 

  32. Becke, A. D. (1996). Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. The Journal of chemical physics, 104, 1040–1046.

    CAS  Google Scholar 

  33. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77, 3865.

    CAS  PubMed  Google Scholar 

  34. Clark, T., Chandrasekhar, J., Spitznagel, G. W., & Schleyer, P. V. R. (1983). Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+ G basis set for first-row elements, Li–F. Journal of Computational Chemistry, 4, 294–301.

    CAS  Google Scholar 

  35. Gaussian, R. A. (2009). 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc. Wallingford CT, 121, 150–166.

    Google Scholar 

  36. Xu, X., & Goddard, W. A. (2004). The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences., 2, 2.

    Google Scholar 

  37. Zhu, X., Cui, P., Kilina, S., & Sun, W. (2017). Multifunctional cationic iridium (III) complexes bearing 2-aryloxazolo [4, 5-f][1, 10] phenanthroline (N^ N) ligand: Synthesis, crystal structure, photophysics, mechanochromic/vapochromic effects, and reverse saturable absorption. Inorganic Chemistry, 56, 13715–13731.

    CAS  PubMed  Google Scholar 

  38. Li, Y., Liu, R., Badaeva, E., Kilina, S., & Sun, W. (2013). Long-Lived π-shape platinum (II) diimine complexes bearing 7-benzothiazolylfluoren-2-yl motif on the bipyridine and acetylide ligands: Admixing π, π* and charge-transfer configurations. The Journal of Physical Chemistry C, 117, 5908–5918.

    CAS  Google Scholar 

  39. Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6–31g* basis set for third-row atoms. Journal of Computational Chemistry., 25, 83.

    Google Scholar 

  40. Rosa, V., Avilés, T., Aullon, G., Covelo, B., & Lodeiro, C. (2008). A New Bis(1-Naphthylimino)acenaphthene Compound and Its Pd(II) and Zn(II) Complexes: Synthesis, Characterization, Solid-State Structures and Density Functional Theory Studies on the Syn and Anti Isomers. Inorganic Chemistry., 69, 75.

    Google Scholar 

  41. Wolf, A., Reiher, M., & Hess, B. A. (2004). Transgressing theory boundaries: The generalized Douglas-Kroll transformation. Recent Advances in Relativistic Molecular Theory (pp. 137–190). Singapore: World Scientific.

    Google Scholar 

  42. Pantazis, D., Chen, X., Landis, C. R., & Neese, F. (2008). All-electron scalar relativistic basis sets for third-row transition metal atoms. Journal of Chemical Theory and Computation., 25, 86.

    Google Scholar 

  43. DiMucci, I. M., Lukens, J. E., Chatterjee, S., Carsch, K. M., Titus, C. J., Lee, S. Y., Nordlund, D., Betley, T. A., MacMillan, S. N., & Lancaster, K. M. (2019). The myth of D8 copper(III). Journal of the American Chemical Society., 2, 2.

    Google Scholar 

  44. Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. The Journal of Physical Chemistry A, 102, 1995–2001.

    CAS  Google Scholar 

  45. Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of computational chemistry, 24, 669–681.

    CAS  PubMed  Google Scholar 

  46. Li, Z., Badaeva, E., Zhou, D., Bjorgaard, J., Glusac, K. D., Killina, S., & Sun, W. (2012). Tuning photophysics and nonlinear absorption of bipyridyl platinum (II) Bisstilbenylacetylide complexes by auxiliary substituents. The Journal of Physical Chemistry A, 116, 4878–4889.

    CAS  PubMed  Google Scholar 

  47. Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33, 580–592.

    PubMed  Google Scholar 

  48. Li, Z., Cui, P., Wang, C., Kilina, S., & Sun, W. (2014). Nonlinear absorbing cationic bipyridyl iridium (III) complexes bearing cyclometalating ligands with different degrees of π-conjugation: synthesis, photophysics, and reverse saturable absorption. The Journal of Physical Chemistry C, 118, 28764–28775.

    CAS  Google Scholar 

  49. De Angelis, F., Tilocca, A., & Selloni, A. (2004). Time-dependent DFT study of [Fe (CN) 6] 4-sensitization of TiO2 nanoparticles. Journal of the American Chemical Society, 126, 15024–15025.

    PubMed  Google Scholar 

  50. Feng, J., Guo, Q., Song, N., Liu, H., Dong, H., Chen, Y., Yu, L., & Dong, L. (2021). Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns. Diamond and Related Materials, 113, 108264.

    CAS  Google Scholar 

  51. Sharma, V., & Jha, P. K. (2019). Enhancement in power conversion efficiency of edge-functionalized graphene quantum dot through adatoms for solar cell applications. Solar Energy Materials and Solar Cells, 2, 2.

    Google Scholar 

  52. Porterfield, W. W. (2013). Inorganic Chemistry. New York: Academic press.

    Google Scholar 

  53. Forde, A., Lystrom, L., Sun, W., Kilin, D., & Kilina, S. (2022). Improving near-infrared emission of meso-aryldipyrrin indium (III) complexes via annulation bridging: Excited-state dynamics. The Journal of Physical Chemistry Letters, 13, 9210–9220.

    CAS  PubMed  Google Scholar 

  54. Zhao, D., Saputra, R. M., Song, P., Yang, Y., & Li, Y. (2021). How graphene strengthened molecular photoelectric performance of solar cells: A photo current-voltage assessment. Solar Energy, 213, 271–283.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Doctoral Research Start-Up Fund under Grant “LZB202302”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6026 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, P., Wu, Q. Density functional theory investigation of photoelectric conversion in graphene quantum dot/Ir(III) complex nanocomposites: the influence of π-conjugation in cyclometalating ligands. Photochem Photobiol Sci 22, 2621–2634 (2023). https://doi.org/10.1007/s43630-023-00477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00477-3

Keywords

Navigation