Skip to main content

Graphene and Quantum Dot Nanocomposites for Photovoltaic Devices

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

  • 4322 Accesses

Abstract

As one of the most attracting nanoscale materials in the past decade, graphene and composites based on graphene have boosted the efficiency of catalytic reaction in energy conversion applications. Charge collection and transport are facilitated with the presence of graphene and reduced graphene oxide in quantum dot solar cells. The 2-D graphene and its derivatives serve as a scaffold for the immobilization of catalytic and photovoltaic nanoparticles as well as promoting selectivity and efficiency of the reaction process. Small size graphene quantum dots, which have quantum confinement effect, are promising for the applications in photovoltaic devices, due to their outstanding properties and advantages, including high optical absorption, tunable bandgap, and earth abundant chemical composition. In this chapter, the synthesis and application of both graphene sheets and graphene quantum dots are highlighted, followed by a perspective of future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prezhdo, O.V., Kamat, P.V., Schatz, G.C.: Virtual issue: graphene and functionalized graphene. J. Phys. Chem. C 115, 3195–3197 (2011)

    Article  Google Scholar 

  2. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  Google Scholar 

  3. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    Article  ADS  Google Scholar 

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  5. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  6. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    Article  ADS  Google Scholar 

  7. Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)

    Article  Google Scholar 

  8. Kongkanand, A., Martínez Domínguez, R., Kamat, P.V.: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. capture and transport of photogenerated electrons. Nano Lett. 7, 676–680 (2007)

    Article  ADS  Google Scholar 

  9. Radich, J.G., Dwyer, R., Kamat, P.V.: Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S-2(−)/S-n(2-) at the counter electrode. J. Phys. Chem. Lett. 2, 2453–2460 (2011)

    Article  Google Scholar 

  10. Vinodgopal, K., Neppolian, B., Lightcap, I.V., Grieser, F., Ashokkumar, M., Kamat, P.V.: Sonolytic design of graphene−Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Lett. 1, 1987–1993 (2010)

    Article  Google Scholar 

  11. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  12. Bourlinos, A.B.., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003)

    Article  Google Scholar 

  13. Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)

    Article  ADS  Google Scholar 

  14. Abdelsayed, V., Moussa, S., Hassan, H.M., Aluri, H.S., Collinson, M.M., El-Shall, M.S.: Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J. Phys. Chem. Lett. 1, 2804–2809 (2010)

    Article  Google Scholar 

  15. Sokolov, D.A., Shepperd, K.R., Orlando, T.M.: Formation of graphene features from direct laser-induced reduction of graphite oxide. J. Phys. Chem. Lett. 1, 2633–2636 (2010)

    Article  Google Scholar 

  16. Hassan, H.M.A., Abdelsayed, V., Khder, A.E.R.S., AbouZeid, K.M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A.: Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837 (2009)

    Article  Google Scholar 

  17. Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  Google Scholar 

  18. Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113, 7985–7989 (2009)

    Article  Google Scholar 

  19. Ng, Y.H., Lightcap, I.V., Goodwin, K., Matsumura, M., Kamat, P.V.: To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 1, 2222–2227 (2010)

    Article  Google Scholar 

  20. Kamat, P.V.: Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2009)

    Article  Google Scholar 

  21. Kamat, P.V.: Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2, 242–251 (2011)

    Article  Google Scholar 

  22. Yu, D., Nagelli, E., Du, F., Dai, L.: Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1, 2165–2173 (2010)

    Article  Google Scholar 

  23. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  24. Yan, X., Cui, X., Li, L.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944–5945 (2010)

    Article  Google Scholar 

  25. Li, L., Yan, X.: Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mueller, M.L., Yan, X., McGuire, J.A., Li, L.: Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett. 10, 2679–2682 (2010)

    Article  ADS  Google Scholar 

  27. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  28. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  29. Persson, B.N.J., Lang, N.D.: Electron–hole-pair quenching of excited states near a metal. Phys. Rev. B 26, 5409–5415 (1982)

    Article  ADS  Google Scholar 

  30. Swathi, R.S., Sebastian, K.L.: Long range resonance energy transfer from a dye molecule to graphene has (distance)[sup −4] dependence. J. Chem. Phys. 130, 086101 (2009)

    Article  ADS  Google Scholar 

  31. Swathi, R.S., Sebastian, K.L.: Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008)

    Article  ADS  Google Scholar 

  32. Chen, Z.Y., Berciaud, S., Nuckolls, C., Heinz, T.F., Brus, L.E.: Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4, 2964–2968 (2010)

    Article  Google Scholar 

  33. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131, 17099–17101 (2009)

    Article  Google Scholar 

  34. Kaniyankandy, S., Rawalekar, S., Ghosh, H.N.: Ultrafast charge transfer dynamics in photoexcited CdTe quantum dot decorated on graphene. J. Phys. Chem. C 116, 16271–16275 (2012)

    Article  Google Scholar 

  35. Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., Pan, N., Yan, L., Wang, X., Hou, J.G.: Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4, 3033–3038 (2010)

    Article  Google Scholar 

  36. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49, 3014–3017 (2010)

    Article  Google Scholar 

  37. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  38. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  39. Lightcap, I.V., Kamat, P.V.: Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J. Am. Chem. Soc. 134, 7109–7116 (2012)

    Article  Google Scholar 

  40. Chang, H.X., Lv, X.J., Zhang, H., Li, J.H.: Quantum dots sensitized graphene: in situ growth and application in photoelectrochemical cells. Electrochem. Commun. 12, 483–487 (2010)

    Article  Google Scholar 

  41. Muszynski, R., Seger, B., Kamat, P.V.: Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 5263–5266 (2008)

    Article  Google Scholar 

  42. Brown, P., Kamat, P.V.: Quantum dot solar cells. Electrophoretic deposition of CdSe−C60 composite films and capture of photogenerated electrons with nC60 cluster shell. J. Am. Chem. Soc. 130, 8890–8891 (2008)

    Article  Google Scholar 

  43. Peng, Z.A., Peng, X.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2000)

    Article  Google Scholar 

  44. Wang, H., Robinson, J.T., Li, X., Dai, H.: Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131, 9910–9911 (2009)

    Article  Google Scholar 

  45. Cai, D., Blair, D., Dufort, F.J., Gumina, M.R., Huang, Z., Hong, G., Wagner, D., Canahan, D., Kempa, K., Ren, Z.F., Chiles, T.C.: Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application. Nanotechnology 19, 1–10 (2008)

    Google Scholar 

  46. Yan, J.F., Ye, Q., Wang, X.L., Yu, B., Zhou, F.: CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale 4, 2109–2116 (2012)

    Article  ADS  Google Scholar 

  47. Dai, L.M.: Layered graphene/quantum dots: nanoassemblies for highly efficient solar cells. ChemSusChem 3, 797–799 (2010)

    Article  Google Scholar 

  48. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  49. Yu, W.W., Qu, L., Guo, W., Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)

    Article  Google Scholar 

  50. Pandey, A., Guyot-Sionnest, P.: Hot electron extraction from colloidal quantum dots. J. Phys. Chem. Lett. 1, 45–47 (2009)

    Article  Google Scholar 

  51. Wang, P., Zakeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagfeldt, A., Nazeeruddin, M.K., Grätzel, M.: Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater. 16, 1806–1811 (2004)

    Article  Google Scholar 

  52. Vogel, R., Pohl, K., Weller, H.: Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem. Phys. Lett. 174, 241–246 (1990)

    Article  ADS  Google Scholar 

  53. Vogel, R., Hoyer, P., Weller, H.: Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  Google Scholar 

  54. Chakrapani, V., Baker, D., Kamat, P.V.: Understanding the role of the sulfide redox couple (S2–/Sn2–) in quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 9607–9615 (2011)

    Article  Google Scholar 

  55. Hodes, G., Manassen, J., Cahen, D.: Electrocatalytic electrodes for the polysulfide redox system. J. Electrochem. Soc. 127, 544–549 (1980)

    Article  Google Scholar 

  56. Zhu, G., Pan, L.K., Sun, H.C., Liu, X.J., Lv, T., Lu, T., Yang, J., Sun, Z.: Electrophoretic deposition of a reduced graphene-Au nanoparticle composite film as counter electrode for CdS quantum dot-sensitized solar cells. Chemphyschem 13, 769–773 (2012)

    Article  Google Scholar 

  57. Deng, M., Zhang, Q., Huang, S., Li, D., Luo, Y., Shen, Q., Toyoda, T., Meng, Q.: Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell. Nanoscale Res. Lett. 5, 986–990 (2010)

    Article  ADS  Google Scholar 

  58. Niitsoo, O., Sarkar, S.K., Pejoux, C., Rühle, S., Cahen, D., Hodes, G.: Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A 181, 306–313 (2006)

    Article  Google Scholar 

  59. Huang, X., Huang, S., Zhang, Q., Guo, X., Li, D., Luo, Y., Shen, Q., Toyoda, T., Meng, Q.: A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem. Commun. 47, 2664–2666 (2011)

    Article  Google Scholar 

  60. Zhang, Q., Guo, X., Huang, X., Huang, S., Li, D., Luo, Y., Shen, Q., Toyoda, T., Meng, Q.: Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)

    Article  Google Scholar 

  61. Robel, I., Bunker, B.A., Kamat, P.V.: Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv. Mater. 17, 2458–2463 (2005)

    Article  Google Scholar 

  62. Kim, S.R., Parvez, M.K., Chhowalla, M.: UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem. Phys. Lett. 483, 124–127 (2009)

    Article  ADS  Google Scholar 

  63. Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)

    Article  Google Scholar 

  64. Li, H., Lu, T., Pan, L., Zhang, Y., Sun, Z.: Electrosorption behavior of graphene in NaCl solutions. J. Mater. Chem. 19, 6773–6779 (2009)

    Article  Google Scholar 

  65. Sun, S., Gao, L., Liu, Y.: Enhanced dye-sensitized solar cell using graphene-TiO[sub 2] photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96, 083113 (2010)

    Article  ADS  Google Scholar 

  66. Manga, K.K., Zhou, Y., Yan, Y., Loh, K.P.: Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19, 3638–3643 (2009)

    Article  Google Scholar 

  67. Zhu, G., Xu, T., Lv, T.A., Pan, L.K., Zhao, Q.F., Sun, Z.: Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem. 650, 248–251 (2011)

    Article  Google Scholar 

  68. Narayanan, R., Deepa, M., Srivastava, A.K.: Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance. Phys. Chem. Chem. Phys. 14, 767–778 (2012)

    Article  Google Scholar 

  69. Jakob, M., Levanon, H., Kamat, P.V.: Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 3, 353–358 (2003)

    Article  ADS  Google Scholar 

  70. Chen, J., Li, C., Eda, G., Zhang, Y., Lei, W., Chhowalla, M., Milne, W.I., Deng, W.Q.: Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem. Commun. 47, 6084–6086 (2011)

    Article  Google Scholar 

  71. Chen, J., Song, J.L., Sun, X.W., Deng, W.Q., Jiang, C.Y., Lei, W., Huang, J.H., Liu, R.S.: An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl. Phys. Lett. 94, 153115 (2009)

    Article  ADS  Google Scholar 

  72. Li, Y., Hu, Y., Zhao, Y., Shi, G.Q., Deng, L.E., Hou, Y.B., Qu, L.T.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776-+ (2011)

    Article  Google Scholar 

  73. Simpson, C.D., Brand, J.D., Berresheim, A.J., Przybilla, L., Räder, H.J., Müllen, K.: Synthesis of a Giant 222 carbon graphite sheet. Chem. Eur. J. 8, 1424–1429 (2002)

    Article  Google Scholar 

  74. Wang, J., Xin, X., Lin, Z.: Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale 3, 3040–3048 (2011)

    Article  ADS  Google Scholar 

  75. Pan, D., Zhang, J., Li, Z., Wu, M.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010)

    Article  Google Scholar 

  76. Rempala, P., Kroulík, J., King, B.T.: A slippery slope: mechanistic analysis of the intramolecular scholl reaction of hexaphenylbenzene. J. Am. Chem. Soc. 126, 15002–15003 (2004)

    Article  Google Scholar 

  77. Hamilton, I.P., Li, B., Yan, X., Li, L.: Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett. 11, 1524–1529 (2011)

    Article  ADS  Google Scholar 

  78. Wu, J., Pisula, W., Müllen, K.: Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  79. Wu, J., Tomović, Ž., Enkelmann, V., Müllen, K.: From branched hydrocarbon propellers to C3-symmetric graphite disks. J. Org. Chem. 69, 5179–5186 (2004)

    Article  Google Scholar 

  80. Yan, X., Cui, X., Li, B., Li, L.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869–1873 (2010)

    Article  ADS  Google Scholar 

  81. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the financial support from DOE Ames Laboratory Seed Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xukai Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xin, X. (2014). Graphene and Quantum Dot Nanocomposites for Photovoltaic Devices. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics