Skip to main content

Advertisement

Log in

Anterior Cruciate Ligament Reconstruction Using Autologous Hamstrings Augmented with Ligament Augmentation and Reconstruction Systems (LARS) or Synthetic Meshwork of LARS Compared with Four-Strand Hamstring Tendon Grafts Alone, a Prospective, Randomized Clinical Study with 2- to 8-Year Follow-Up

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

To compare the long-term outcomes of anterior cruciate ligament (ACL) reconstruction using a four-strand hamstring tendon graft alone (hamstring group) or with synthetics (Ligament Augmentation and Reconstruction System, LARS group) or synthetic meshwork of LARS (meshwork group).

Methods

Patients who underwent ACL reconstruction using four-strand hamstring tendon grafts (hamstring group), autologous hamstrings augmented with the LARS (LARS group), or synthetic meshwork of LARS (meshwork group) were selected in this prospective randomized clinical study. Patient-reported outcome measures (PROMs) were obtained preoperatively; at 6, 12, and 18 months postoperatively; and at final follow-up between 3 and 8 years. Second-look arthroscopic findings were used to evaluate graft morphology based on graft tension, graft tear, and synovial coverage.

Results

A total of 141 consecutive patients underwent ACL reconstruction, 47 patients in each group, and 21 patients were lost to follow-up during the study period. At the 6-month follow-up, the IKDC scores and Lysholm scores were significantly better in the LARS group (P < 0.05). At the 6- and 12-month follow-ups, the KOS-ADLS, KOOS-activities of daily living and quality of life, NSARS scores, GRC scores, Tegner scores, and ACL-RSI scores were significantly better in the LARS group (P < 0.05). For the LARS group, hamstring group, and meshwork group, the cumulative failure rates were 8.5%, 12.8%, and 4.3%, respectively. Malposition of the femoral tunnel was significantly associated with cumulative failure (P < 0.05). There was no difference between the groups in other outcomes at any other time, including radiographic and arthroscopic outcomes.

Conclusions

ACL reconstruction using autologous hamstring augmented with LARS resulted in significantly better clinical scores with a faster return to sports and comparative side-to-side differences in graft laxity by 6 and 12 months follow-up. Despite these findings, no statistically significant differences were seen among the three patient groups in terms of objective outcomes and clinical scores at the 18-month, 3-year and 8-year follow-ups. Additionally, a malpositioned femoral tunnel was associated with graft failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Herzog, M. M., Marshall, S. W., Lund, J. L., Pate, V., Mack, C. D., & Spang, J. T. (2018). Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002–2014. Sports Health, 10(6), 523–531.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gornitzky, A. L., Lott, A., Yellin, J. L., Fabricant, P. D., Lawrence, J. T., & Ganley, T. J. (2016). Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: A systematic review and meta-analysis. American Journal of Sports Medicine, 44(10), 2716–2723.

    Article  PubMed  Google Scholar 

  3. Webster, K. E., & Hewett, T. E. (2022). Anterior cruciate ligament injury and knee osteoarthritis: An umbrella systematic review and meta-analysis. Clinical Journal of Sport Medicine, 32(2), 145–152.

    Article  PubMed  Google Scholar 

  4. Filbay, S. R., Skou, S. T., Bullock, G. S., et al. (2022). Long-Term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: A systematic review and meta-analysis for the OPTIKNEE consensus. British Journal of Sports Medicine, 56(24), 1465–1474.

    Article  PubMed  Google Scholar 

  5. Todor, A., Nistor, D. V., & Caterev, S. (2019). Clinical outcomes after ACL reconstruction with free quadriceps tendon autograft versus hamstring tendons autograft. A retrospective study with a minimal follow-up two years. Acta Orthopaedica et Traumatologica Turcica, 53(3), 180–183.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hulet, C., Sonnery-Cottet, B., Stevenson, C., et al. (2019). The use of allograft tendons in primary ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 27, 1754–1770.

    PubMed  Google Scholar 

  7. Zaid, H. H., Chenwei, N., Xu, H., Yang, G., & Li, X. (2023). Clinical and arthroscopic outcomes of single-bundle anterior cruciate ligament reconstruction using autologous hamstrings augmented with ligament augmentation and reconstruction systems compared with four-strand hamstring tendon grafts alone. International Orthopaedics, 47(1), 151–164.

    Article  PubMed  Google Scholar 

  8. Fan, D., Ma, J., & Zhang, L. (2021). Patellar tendon versus artificial grafts in anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 16(1), 1–10.

    Article  Google Scholar 

  9. Laxdal, G., Kartus, J., Hansson, L., Heidvall, M., Ejerhed, L., & Karlsson, J. (2005). A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy, 21(1), 34–42.

    Article  PubMed  Google Scholar 

  10. Maletis, G. B., Inacio, M. C., & Funahashi, T. T. (2013). Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. American Journal of Sports Medicine, 41(9), 2090–2098.

    Article  PubMed  Google Scholar 

  11. Almqvist, K., Willaert, P., De Brabandere, S., Criel, K., & Verdonk, R. (2009). A long-term study of anterior cruciate ligament allograft reconstruction. Knee Surg Sports Traumatol Arthros, 17, 818–822.

    Article  CAS  Google Scholar 

  12. Sun, K., Zhang, J., Wang, Y., et al. (2011). Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: A prospective, randomized controlled study. American Journal of Sports Medicine, 39(7), 1430–1438.

    Article  PubMed  Google Scholar 

  13. Krych, A. J., Jackson, J. D., Hoskin, T. L., & Dahm, D. L. (2008). A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy, 24(3), 292–298.

    Article  PubMed  Google Scholar 

  14. Carey, J. L., Dunn, W. R., Dahm, D. L., Zeger, S. L., & Spindler, K. P. (2009). A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. Journal of Bone and Joint Surgery. American Volume, 91(9), 2242.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greenberg, D. D., Robertson, M., Vallurupalli, S., White, R. A., & Allen, W. C. (2010). Allograft compared with autograft infection rates in primary anterior cruciate ligament reconstruction. The Journal of Bone and Joint Surgery, 92(14), 2402–2408.

    Article  PubMed  Google Scholar 

  16. Tiefenboeck, T. M., Thurmaier, E., Tiefenboeck, M. M., et al. (2015). Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. The Knee, 22(6), 565–568.

    Article  PubMed  Google Scholar 

  17. Parchi, P. D., Gianluca, C., Dolfi, L., et al. (2013). Anterior cruciate ligament reconstruction with LARS™ artificial ligament results at a mean follow-up of eight years. International Orthopaedics, 37, 1567–1574.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia, Z., Xue, C., Wang, W., Liu, T., Huang, X., & Xu, W. (2017). Clinical outcomes of anterior cruciate ligament reconstruction using LARS artificial graft with an at least 7-year follow-up. Medicine (Baltimore), 96(14), e6568.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, Z.-t, Zhang, X.-l, Jiang, Y., & Zeng, B.-F. (2010). Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. International Orthopaedics, 34, 45–49.

    Article  CAS  PubMed  Google Scholar 

  20. Krupa, S., Królikowska, A., & Reichert, P. (2016). Postoperative knee joint stability following anterior cruciate ligament reconstruction using the ligament advanced reinforcement system. Polimery w Medycynie, 46(2), 155–161.

    PubMed  Google Scholar 

  21. Bugelli, G., Dell’Osso, G., Ascione, F., Gori, E., Bottai, V., & Giannotti, S. (2018). LARS™ in ACL reconstruction: Evaluation of 60 cases with 5-year minimum follow-up. Musculoskeletal Surgery, 102, 57–62.

    CAS  PubMed  Google Scholar 

  22. Takazawa, Y., Ikeda, H., Saita, Y., et al. (2017). Return to play of rugby players after anterior cruciate ligament reconstruction using hamstring autograft: Return to sports and graft failure according to age. Arthroscopy, 33(1), 181–189.

    Article  PubMed  Google Scholar 

  23. Davies, G. J., McCarty, E., Provencher, M., & Manske, R. C. (2017). ACL return to sport guidelines and criteria. Current Reviews in Musculoskeletal Medicine, 10, 307–314.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ardern, C. L., Taylor, N. F., Feller, J. A., & Webster, K. E. (2014). Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. British Journal of Sports Medicine, 48(21), 1543–1552.

    Article  PubMed  Google Scholar 

  25. Kinugasa, K., Mae, T., Matsumoto, N., Nakagawa, S., Yoneda, M., & Shino, K. (2011). Effect of patient age on morphology of anterior cruciate ligament grafts at second-look arthroscopy. Arthroscopy, 27(1), 38–45.

    Article  PubMed  Google Scholar 

  26. Ahn, J. H., Wang, J. H., Lee, Y. S., Kim, J. G., Kang, J. H., & Koh, K. H. (2011). Anterior cruciate ligament reconstruction using remnant preservation and a femoral tensioning technique: Clinical and magnetic resonance imaging results. Arthroscopy, 27(8), 1079–1089.

    Article  PubMed  Google Scholar 

  27. Toritsuka, Y., Shino, K., Horibe, S., et al. (2004). Second-look arthroscopy of anterior cruciate ligament grafts with multistranded hamstring tendons. Arthroscopy, 20(3), 287–293.

    Article  PubMed  Google Scholar 

  28. Ahn, J. H., Kim, J. D., & Kang, H. W. (2015). Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy, 11, 2152–2161.

    Article  Google Scholar 

  29. Noh, J. H., Yang, B. G., Roh, Y. H., & Lee, J. S. (2011). Synovialization on second-look arthroscopy after anterior cruciate ligament reconstruction using Achilles allograft in active young men. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 1843–1850.

    Article  PubMed  Google Scholar 

  30. Choi, S., Kim, M.-K., Kwon, Y. S., & Kang, H. (2017). Clinical and arthroscopic outcome of single bundle anterior cruciate ligament reconstruction: Comparison of remnant preservation versus conventional technique. The Knee, 24(5), 1025–1032.

    Article  PubMed  Google Scholar 

  31. Ahn, J. H., Lee, S. H., Choi, S. H., & Lim, T. K. (2010). Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: Comparison of remnant bundle preservation and standard technique. American Journal of Sports Medicine, 38(9), 1768–1777.

    Article  PubMed  Google Scholar 

  32. Vogl, T. J., Schmitt, J., Lubrich, J., et al. (2001). Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: Diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. European Radiology, 11, 1450–1456.

    Article  CAS  PubMed  Google Scholar 

  33. Bernard, M., Hertel, P., Hornung, H., & Cierpinski, T. (1997). Femoral insertion of the ACL Radiographic quadrant method. The American Journal of Knee Surgery, 10(1), 14–21.

    CAS  PubMed  Google Scholar 

  34. Amis, A. A., & Jakob, R. P. (1998). Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surgery, Sports Traumatology, Arthroscopy, 6, S2–S12.

    Article  PubMed  Google Scholar 

  35. Roos, E. M., & Lohmander, L. S. (2003). The knee injury and osteoarthritis outcome score (KOOS): From joint injury to osteoarthritis. Health and Quality of Life Outcomes, 1, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Angthong, C., Chernchujit, B., Apivatgaroon, A., Chaijenkit, K., Nualon, P., & Suchao-in, K. (2015). The anterior cruciate ligament reconstruction with the peroneus longus tendon: A biomechanical and clinical evaluation of the donor ankle morbidity. Journal of the Medical Association of Thailand, 98(6), 555–560.

    PubMed  Google Scholar 

  37. Di Benedetto, P., Di Benedetto, E., Fiocchi, A., Beltrame, A., & Causero, A. (2016). Causes of failure of anterior cruciate ligament reconstruction and revision surgical strategies. Knee Surgery & Related Research, 28(4), 319.

    Article  Google Scholar 

  38. Morgan, J. A., Dahm, D., Levy, B., Stuart, M. J., Group MS. (2012). Femoral tunnel malposition in ACL revision reconstruction. The Journal of Knee Surgery, 25(05), 361–368.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen, J. L., Allen, C. R., Stephens, T. E., et al. (2013). Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single-and multiple-revision ACL reconstructions: A MARS cohort study. American Journal of Sports Medicine, 41(7), 1571–1578.

    Article  PubMed  Google Scholar 

  40. Su, M., Jia, X., Zhang, Z., et al. (2021). Medium-term (least 5 years) comparative outcomes in anterior cruciate ligament reconstruction using 4SHG, allograft, and LARS ligament. Clinical Journal of Sport Medicine, 31(2), e101.

    PubMed  Google Scholar 

  41. Chen, T., Zhang, P., Chen, J., Hua, Y., & Chen, S. (2017). Long-term outcomes of anterior cruciate ligament reconstruction using either synthetics with remnant preservation or hamstring autografts: A 10-year longitudinal study. American Journal of Sports Medicine, 45(12), 2739–2750.

    Article  PubMed  Google Scholar 

  42. Iliadis, D. P., Bourlos, D. N., Mastrokalos, D. S., Chronopoulos, E., & Babis, G. C. (2016). LARS artificial ligament versus ABC purely polyester ligament for anterior cruciate ligament reconstruction. Orthopaedic Journal of Sports Medicine, 4(6), 2325967116653359.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Björnsson, H., Samuelsson, K., Sundemo, D., et al. (2016). A randomized controlled trial with mean 16-year follow-up comparing hamstring and patellar tendon autografts in anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 44(9), 2304–2313.

    Article  PubMed  Google Scholar 

  44. Bottoni, C. R., Smith, E. L., Shaha, J., et al. (2015). Autograft versus allograft anterior cruciate ligament reconstruction: A prospective, randomized clinical study with a minimum 10-year follow-up. American Journal of Sports Medicine, 43(10), 2501–2509.

    Article  PubMed  Google Scholar 

  45. Thompson, S. M., Salmon, L. J., Waller, A., Linklater, J., Roe, J. P., & Pinczewski, L. A. (2016). Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. American Journal of Sports Medicine, 44(12), 3083–3094.

    Article  PubMed  Google Scholar 

  46. Webster, K. E., Feller, J. A., Hartnett, N., Leigh, W. B., & Richmond, A. K. (2016). Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: A 15-year follow-up of a randomized controlled trial. American Journal of Sports Medicine, 44(1), 83–90.

    Article  PubMed  Google Scholar 

  47. Li, H., Yao, Z., Jiang, J., et al. (2012). Biologic failure of a ligament advanced reinforcement system artificial ligament in anterior cruciate ligament reconstruction: A report of serious knee synovitis. Arthroscopy, 28(4), 583–586.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, K., Chen, S., Wang, L., et al. (2010). Anterior cruciate ligament reconstruction with LARS artificial ligament: A multicenter study with 3-to 5-year follow-up. Arthroscopy, 26(4), 515–523.

    Article  PubMed  Google Scholar 

  49. Batty, L. M., Norsworthy, C. J., Lash, N. J., Wasiak, J., Richmond, A. K., & Feller, J. A. (2015). Synthetic devices for reconstructive surgery of the cruciate ligaments: A systematic review. Arthroscopy, 31(5), 957–968.

    Article  PubMed  Google Scholar 

  50. Glezos, C. M., Waller, A., Bourke, H. E., Salmon, L. J., & Pinczewski, L. A. (2012). Disabling synovitis associated with LARS artificial ligament use in anterior cruciate ligament reconstruction: A case report. American Journal of Sports Medicine, 40(5), 1167–1171.

    Article  PubMed  Google Scholar 

  51. Tayton, K., Phillips, G., & Ralis, Z. (1982). Long-term effects of carbon fibre on soft tissues. The Journal of Bone and Joint Surgery British, 64(1), 112–114.

    Article  CAS  Google Scholar 

  52. Ventura, A., Legnani, C., Terzaghi, C., Borgo, E., & Albisetti, W. (2014). Revision surgery after failed ACL reconstruction with artificial ligaments: Clinical, histologic and radiographic evaluation. European Journal of Orthopaedic Surgery & Traumatology, 24, 93–98.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all participants who volunteered to take part in this study.

Funding

This research received no specific Grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HHGZ, first author of this article, drafting the manuscript and data analysis, carried out the concepts, design, definition of intellectual content, data acquisition, data analysis, and manuscript preparation. XH provided assistance for data acquisition. HHGZ and XH Contributed equally to this manuscript. GY, completed all operations. All authors agree to be accountable for all aspects of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hamood H. G. Zaid or Guo Yang.

Ethics declarations

Conflict of interest

All authors declare that there are no personal or commercial relationships related to this work that would lead to a conflict of interest.

Ethical Approval

This study was approved by the ethics committee of our hospital (IRB No.2014-052).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, H.H.G., Yang, G. & Xu Hua Anterior Cruciate Ligament Reconstruction Using Autologous Hamstrings Augmented with Ligament Augmentation and Reconstruction Systems (LARS) or Synthetic Meshwork of LARS Compared with Four-Strand Hamstring Tendon Grafts Alone, a Prospective, Randomized Clinical Study with 2- to 8-Year Follow-Up. JOIO 57, 1497–1509 (2023). https://doi.org/10.1007/s43465-023-00956-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-00956-w

Keywords

Navigation