Skip to main content

Advertisement

Log in

Posterior Tibial Slope in Anterior Cruciate Ligament Surgery: A Systematic Review

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

While the literature suggests a correlation between posterior tibial slope and sagittal stability of the knee, there is a lack of consensus relating to how to measure the slope, what a normal slope value would be, and which critical values should guide extra surgical treatment.

We performed a systematic literature review looking at the posterior tibial slope and cruciate ligament surgery. Our aims were to define a gold standard measurement technique of posterior tibial slope, as well as determining its normal range and the important values for consideration of adjuncts during cruciate ligament surgery.

Methods

Electronic searches of MEDLINE (PubMed), CINAHL, Cochrane, Embase, ScienceDirect, and NICE in June 2020 were completed. Inclusion criteria were original studies in peer-reviewed English language journals. A quality assessment of included studies was completed using the Methodological Index for Non-Randomized Studies (MINORS) Criteria.

Results

Two-hundred and twenty-one papers were identified; following exclusions 34 papers were included for data collection. The mean MINORS score was 13.8 for non-comparative studies and 20.4 for comparative studies, both indicating fair to good quality studies. A large variation in the posterior tibial slope measurement technique was identified, resulting in a wide range of values reported. A significant variation in slope value also existed between different races, ages and genders.

Conclusion

Cautiously, the authors suggest a normal range of 6-12º, using the proximal tibial axis at 5 and 15 cms below the joint. We suggest 12º as a cut-off value for slope-reducing osteotomy as an adjunct to revision ligament reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abram, S. G., Price, A. J., Judge, A., & Beard, D. J. (2020). Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: Hospital statistics from 1997 to 2017. British Journal of Sports Medicine, 54(5), 286–291.

    Article  PubMed  Google Scholar 

  2. Webb, J. M., Salmon, L. J., Leclerc, E., Pinczewski, L. A., & Roe, J. P. (2013). Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. American Journal of Sports Medicine, 41(12), 2800–2804.

    Article  PubMed  Google Scholar 

  3. Christensen, J. J., Krych, A. J., Engasser, W. M., Vanhees, M. K., Collins, M. S., & Dahm, D. L. (2015). Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 43(10), 2510–2514.

    Article  PubMed  Google Scholar 

  4. Han, H. S., Chang, C. B., Seong, S. C., Lee, S., & Lee, M. C. (2008). Evaluation of anatomic references for tibial sagittal alignment in total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy., 16(4), 373–377.

    Article  Google Scholar 

  5. Zhang, Y., Wang, J., Xiao, J., Zhao, L., Yan, G., et al. (2014). Measurement and comparison of tibial posterior slope angle in different methods based on three-dimensional reconstruction. The Knee, 21(3), 694–694. https://doi.org/10.1016/j.knee.2014.01.008

    Article  PubMed  Google Scholar 

  6. Pangaud, C., Laumonerie, P., Dagneaux, L., LiArno, S., Wellings, P., Faizan, A., et al. (2020). Measurement of the posterior tibial slope depends on ethnicity, sex, and lower limb alignment: a computed tomography analysis of 378 healthy participants. Orthopaedic Journal of Sports Medicine, 8(1), 2325967119895258.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bisicchia, S., Scordo, G. M., Prins, J., & Tudisco, C. (2017). Do ethnicity and gender influence posterior tibial slope? Journal of Orthopaedics Traumatology., 18(4), 319–324.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weinberg, D. S., Williamson, D. F. K., Gebhart, J. J., Knapik, D. M., & Voos, J. E. (2017). Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. American Journal of Sports Medicine, 45(1), 106–113.

    Article  PubMed  Google Scholar 

  9. Hashemi, J., Chandrashekar, N., Gill, B., Beynnon, B. D., Slauterbeck, J. R., Schutt, R. C., Jr., et al. (2008). The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. Journal of Bone and Joint Surgery. American Volume, 90(12), 2724–2734.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brandon, M. L., Haynes, P. T., Bonamo, J. R., Flynn, M. I., Barrett, G. R., & Sherman, M. F. (2006). The Association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(8), 894–899.

    Article  Google Scholar 

  11. Stijak, L., Herzog, R., & Schai, P. (2008). Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surgery, Sports Traumatology, Arthroscopy, 1(16), 112–117.

    Article  Google Scholar 

  12. Dare, D. M., Fabricant, P. D., McCarthy, M. M., Rebolledo, B. J., Green, D. W., Cordasco, F. A., et al. (2015). Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: An MRI-based case-control study of 152 patients. American Journal of Sports Medicine, 43(7), 1632–1639.

    Article  PubMed  Google Scholar 

  13. Beynnon, B. D., Hall, J. S., Sturnick, D. R., Desarno, M. J., Gardner-Morse, M., Tourville, T. W., et al. (2014). Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. The American Journal of Sports Medicine., 42(5), 1039–1048.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khan, M. S., Seon, J. K., & Song, E. K. (2011). Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. International Orthopaedics., 35(8), 1251–1256.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeng, C., Yang, T., Wu, S., Li, H., et al. (2016). Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surgery Sports Traumatology Arthroscopy., 24(3), 830–837.

    Article  Google Scholar 

  16. Kızılgöz, V., Sivrioğlu, A. K., Ulusoy, G. R., Yıldız, K., Aydın, H., & Çetin, T. (2019). Posterior tibial slope measurement on lateral knee radiographs as a risk factor of anterior cruciate ligament injury: a cross-sectional study. Radiography, 25(1), 33–38.

    Article  PubMed  Google Scholar 

  17. DePhillipo, N. N., Zeigler, C. G., Dekker, T. J., Grantham, W. J., Aman, Z. S., Kennedy, M. I., et al. (2019). Lateral posterior tibial slope in male and female athletes sustaining contact versus noncontact anterior cruciate ligament tears: a prospective study. American Journal of Sports Medicine, 47(8), 1825–1830.

    Article  PubMed  Google Scholar 

  18. Lee, C. C., Youm, Y. S., Cho, S., Jung, S. H., Bae, M. H., Park, S. J., et al. (2018). Does posterior tibial slope affect graft rupture following anterior cruciate ligament reconstruction? Arthroscopy, 34(7), 2152–2155.

    Article  PubMed  Google Scholar 

  19. Jaecker, V., Drouven, S., Naendrup, J. H., Kanakamedala, A. C., Pfeiffer, T., & Shafizadeh, S. (2018). Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction. Archives of Orthopaedic and Trauma Surgery, 138(10), 1423–1431.

    Article  PubMed  Google Scholar 

  20. Grassi, A., Signorelli, C., Urrizola, F., Macchiarola, L., Raggi, F., Mosca, M., et al. (2019). Patients with failed anterior cruciate ligament reconstruction have an increased posterior lateral tibial plateau slope: a case-controlled study. Arthroscopy, 35(4), 1172–1182.

    Article  PubMed  Google Scholar 

  21. Sauer, S., English, R., & Clatworthy, M. (2019). The influence of tibial slope on anterior cruciate ligament graft failure risk is dependent on graft positioning. Journal of Orthopaedic Surgery., 27(1), 2309499019834674.

    Article  PubMed  Google Scholar 

  22. Kiapour, A. M., Yang, D. S., Badger, G. J., Karamchedu, N. P., Murray, M. M., Fadale, P. D., et al. (2019). Anatomic features of the tibial plateau predict outcomes of ACL reconstruction within 7 years after surgery. The American Journal of Sports Medicine., 47(2), 303–311.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dejour, D., Saffarini, M., Demey, G., & Baverel, L. (2015). Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surgery, Sports Traumatology, Arthroscopy, 23(10), 2846–2852.

    Article  PubMed  Google Scholar 

  24. Sonnery-Cottet, B., Mogos, S., Thaunat, M., Archbold, P., Fayard, J. M., Freychet, B., et al. (2014). Proximal Tibial Anterior Closing Wedge Osteotomy in Repeat Revision of Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 42(8), 1873–1880.

    Article  PubMed  Google Scholar 

  25. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 21(339), b2535.

    Article  Google Scholar 

  26. Slim, K., Nini, E., Forestier, D., Kwiatkowski, F., Panis, Y., & Chipponi, J. (2003). Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ Journal of Surgery, 73(9), 712–716.

    Article  PubMed  Google Scholar 

  27. Yoo, J. H., Chang, C. B., Shin, K. S., Seong, S. C., & Kim, T. K. (2008). Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. Journal of Arthroplasty, 23(4), 586–592.

    Article  PubMed  Google Scholar 

  28. Zhang Y, Wang J, Xiao J, Zhao L, Li Z han, Yan G, et al. Measurement and comparison of tibial posterior slope angle in different methods based on three-dimensional reconstruction. Knee. 2014;21(3):694–698.

  29. Dejour, H., Bonnin, M. (1994). Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. The Journal of Bone and Joint Surgery British 76(5):745–749.

  30. Hudek, R., Schmutz, S., Regenfelder, F., Fuchs, B., & Koch, P. P. (2019). Novel measurement technique of the tibial slope on conventional MRI. Clinical Orthopaedics Related Research., 467(8), 2066–2072.

    Article  Google Scholar 

  31. Utzschneider, S., Goettinger, M., Weber, P., Horng, A., Glaser, C., Jansson, V., et al. (2011). Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surgery, Sports Traumatology, Arthroscopy., 19(10), 1643–1648.

    Article  CAS  Google Scholar 

  32. Trojian, T. H., & Collins, S. (2006). The anterior cruciate ligament tear rate varies by race in professional women’s basketball. American Journal of Sports Medicine, 34(6), 895–898.

    Article  PubMed  Google Scholar 

  33. Faschingbauer, M., Sgroi, M., Juchems, M., Reichel, H., & Kappe, T. (2014). Can the tibial slope be measured on lateral knee radiographs? Knee Surgery, Sports Traumatology, Arthroscopy., 22(12), 3163–3167.

    Article  CAS  Google Scholar 

  34. Ho, J. P. Y., Merican, A. M., Hashim, M. S., Abbas, A. A., Chan, C. K., & Mohamad, J. A. (2017). Three-dimensional computed tomography analysis of the posterior tibial slope in 100 knees. Journal of Arthroplasty, 32(10), 3176–3183.

    Article  PubMed  Google Scholar 

  35. Simon, R. A., Everhart, J. S., Nagaraja, H. N., & Chaudhari, A. M. (2010). A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. Journal of Biomechanics., 43(9), 1702–1707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wahl, C. J., Westermann, R. W., Blaisdell, G. Y., & Cizik, A. M. (2012). An association of lateral knee sagittal anatomic factors with non-contact ACL injury: sex or geometry? The Journal of Bone and Joint Surgery-American Volume., 94(3), 217–226.

    Article  PubMed  Google Scholar 

  37. Su, A. W., Bogunovic, L., Smith, M. V., Gortz, S., Brophy, R. H., Wright, R. W., et al. (2020). Medial tibial slope determined by plain radiography is not associated with primary or recurrent anterior cruciate ligament tears. The Journal of Knee Surgery., 33(01), 22–28.

    Article  PubMed  Google Scholar 

  38. Schillhammer, C. (2018). <em>Editorial Commentary:</em> Managing excessive posterior slope in anterior cruciate ligament reconstruction: where do we draw the line? Arthroscopy, 34(7), 2156–2157.

    Article  PubMed  Google Scholar 

  39. Kim, H. Y., Kim, K. J., Yang, D. S., Jeung, S. W., Choi, H. G., & Choy, W. S. (2015). Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis. Clinics in Orthopedic Surgery., 7(3), 303–309.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amirtharaj, M. J., Hardy, B. M., Kent, R. N., Nawabi, D. H., Wickiewicz, T. L., Pearle, A. D., et al. (2018). Automated, accurate, and three-dimensional method for calculating sagittal slope of the tibial plateau. Journal of Biomechanics, 79, 212–217.

    Article  PubMed  Google Scholar 

  41. Zhang, Y., Chen, Y., Qiang, M., Zhang, K., Li, H., Jiang, Y., et al. (2018). Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology. Medicine, 97(30), e11632.

    Article  PubMed  PubMed Central  Google Scholar 

  42. O’Malley, M. P., Milewski, M. D., Solomito, M. J., Erwteman, A. S., & Nissen, C. W. (2015). The association of tibial slope and anterior cruciate ligament rupture in skeletally immature patients. Arthroscopy: The Journal of Arthoscopic & Related Surgery, 31(1), 77–82.

    Article  Google Scholar 

  43. Jenny, J., Rapp, E., & Kehr, P. (1997). Proximal tibial meniscal slope: A comparison with the bone slope. Revue de Chirurgie Orthopedique et Reparatrice de l’Appareil Moteur, 84(5), 435–438.

    Google Scholar 

  44. Feucht, M. J., Mauro, C. S., Brucker, P. U., Imhoff, A. B., & Hinterwimmer, S. (2013). The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surgery, Sports Traumatology, Arthroscopy., 21(1), 134–145.

    Article  Google Scholar 

  45. Shelburne, K. B., Kim, H. J., Sterett, W. I., & Pandy, M. G. (2011). Effect of posterior tibial slope on knee biomechanics during functional activity. Journal of Orthopaedic Research., 29(2), 223–231.

    Article  PubMed  Google Scholar 

  46. Wang, Y., Yang, T., Zeng, C., Wei, J., Xie, D., Yang, Y. H., et al. (2017). Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthroscopy, 33(6), 1248-1259.e4.

    Article  PubMed  Google Scholar 

  47. Yoon, K. H., Park, S. Y., Park, J. Y., Kim, E. J., Kim, S. J., Kwon, Y. B., et al. (2020). Influence of posterior tibial slope on clinical outcomes and survivorship after anterior cruciate ligament reconstruction using hamstring autografts: a minimum of 10-year follow-up. Arthroscopy. https://doi.org/10.1016/j.arthro.2020.06.011

    Article  PubMed  Google Scholar 

  48. Bernhardson, A. S., DePhillipo, N. N., Daney, B. T., Kennedy, M. I., Aman, Z. S., & LaPrade, R. F. (2019). Posterior tibial slope and risk of posterior cruciate ligament injury. American Journal of Sports Medicine, 47(2), 312–317.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

The roles of authors: All authors: substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work, drafting the work, or revising it critically for important intellectual content and final approval for the version to be published.

Corresponding author

Correspondence to James Houston.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standard Statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandalia, V., Bayley, M., Bhamber, N. et al. Posterior Tibial Slope in Anterior Cruciate Ligament Surgery: A Systematic Review. JOIO 57, 1376–1386 (2023). https://doi.org/10.1007/s43465-023-00947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-00947-x

Keywords

Navigation