Skip to main content
Log in

Influences of stress states and loading directions on the anisotropic fracture of magnesium alloy AZ31B sheet under tension-dominated forming conditions

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The crystallographic textures of metal sheet induced by the rolling process cause its anisotropic fracture behavior via plasticity anisotropy. This research aimed to characterize the anisotropic fracture behavior of magnesium alloy AZ31B sheet during the conventional tension-dominated forming conditions. Four specimens with different shapes were designed to cover diverse stress states, and were respectively tension-tested to fracture along the rolling direction (RD), diagonal direction (DD), and transverse direction (TD) of rolled sheet. Almost all specimens failed in the shear fracture mode with slight necking localization. The distinct differences among load response, strain distribution as well fracture strain for three directions revealed the severe anisotropic fracture characteristic. To characterize the fracture anisotropy, the isotropic modified Mohr–Coulomb (MMC) fracture criterion was revised into an anisotropic one by considering the effect of loading direction. The updated unified fracture model together with the Yld2000-3d anisotropic yield function had better performances in describing load responses of tension tests for scaled modified compact-tension (SMCT) specimens under three loading directions, especially blindly predicting their crack locations. Three SMCT specimens all failed due to the tension-dominated stress state with the stress triaxiality higher than 1/3. As a comparison, the isotropic MMC model separately calibrated by tests along the RD, DD, and TD can only predict the fracture behavior of SMCT specimen in the corresponding loading direction, but it failed to judge the fracture features of other two directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li Y, Luo M, Gerlach J, Wierzbicki T. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol. 2010;210:1858–69. https://doi.org/10.1016/j.jmatprotec.2010.06.021.

    Article  CAS  Google Scholar 

  2. Park N, Huh H, Yoon JW. Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct. 2018;151:181–94. https://doi.org/10.1016/j.ijsolstr.2018.01.009.

    Article  CAS  Google Scholar 

  3. Charoensuk K, Panich S, Uthaisangsuk V. Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour. J Mater Process Technol. 2017;248:218–35. https://doi.org/10.1016/j.jmatprotec.2017.05.035.

    Article  Google Scholar 

  4. Gu B, He J, Li SH, Lin ZQ. Anisotropic fracture modeling of sheet metals: From in-plane to out-of-plane. Int J Solids Struct. 2020;182:112–40. https://doi.org/10.1016/j.ijsolstr.2019.08.004.

    Article  Google Scholar 

  5. Li SH, He J, Gu B, Zeng D, Xia ZC, Zhao YX, Lin ZQ. Anisotropic fracture of advanced high strength steel sheets: experiment and theory. Int J Plast. 2018;103:95–118. https://doi.org/10.1016/j.ijplas.2018.01.003.

    Article  CAS  Google Scholar 

  6. Habib SA, Lloyd JT, Meredith CS, Khan AS, Schoenfeld SE. Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: Experiments and modeling. Int J Plast. 2019;122:285–318. https://doi.org/10.1016/j.ijplas.2019.07.011.

    Article  CAS  Google Scholar 

  7. Qian LY, Fang G, Zeng P. Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. Int J Mech Sci. 2017;126:55–66. https://doi.org/10.1016/j.ijmecsci.2017.03.013.

    Article  Google Scholar 

  8. Basalt S, Panda SK. Failure strains of anisotropic thin sheet metals: experimental evaluation and theoretical prediction. Int J Mech Sci. 2019;151:356–74. https://doi.org/10.1016/j.ijmecsci.2018.10.065.

    Article  Google Scholar 

  9. Safaei M, Zang SL, Lee MG, De Waele W. Evaluation of anisotropic constitutive models: mixed anisotropic hardening and non-associated flow rule approach. Int J Mech Sci. 2013;73:53–68. https://doi.org/10.1016/j.ijmecsci.2013.04.003.

    Article  Google Scholar 

  10. Li H, Fu MW, Lu J, Yang H. Ductile fracture: experiments and computations. Int J Plast. 2011;27(2):147–80. https://doi.org/10.1016/j.ijplas.2010.04.001.

    Article  CAS  Google Scholar 

  11. Malcher L, Pires FMA, de Sa JMAC. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014;54:193–228. https://doi.org/10.1016/j.ijplas.2013.08.015.

    Article  CAS  Google Scholar 

  12. Wu H, Xu WC, Shan DB, Jin BC. An extended GTN model for low stress triaxiality and application in spinning forming. J Mater Process Technol. 2019;263:112–28. https://doi.org/10.1016/j.jmatprotec.2018.07.032.

    Article  Google Scholar 

  13. Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: experiments, modeling and numerical simulations. Int J Plast. 2018;102:70–82. https://doi.org/10.1016/j.ijplas.2017.12.003.

    Article  Google Scholar 

  14. Bai YL, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract. 2010;161(1):1–20. https://doi.org/10.1007/s10704-009-9422-8.

    Article  CAS  Google Scholar 

  15. Lou YS, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. 2014;54:56–80. https://doi.org/10.1063/1.4850037.

    Article  CAS  Google Scholar 

  16. Mu L, Zang Y, Wang Y, Li XL, Stemler PMA. Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int J Mech Sci. 2018;141:408–23. https://doi.org/10.1016/j.ijmecsci.2018.04.025.

    Article  Google Scholar 

  17. Talebi-Ghadikolaee H, Naeini HM, Mirnia MJ, Mirzai MA, Alexandrov S, Zeinali MS. Modeling of ductile damage evolution in roll forming of U-channel sections. J Mater Process Technol. 2020;283: 116690. https://doi.org/10.1016/j.jmatprotec.2020.116690.

    Article  CAS  Google Scholar 

  18. Steglich D, Wafai H, Besson J. Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal. Eng Fract Mech. 2010;77(17):3501–18. https://doi.org/10.1016/j.engfracmech.2010.08.021.

    Article  Google Scholar 

  19. Luo M, Dunand M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part II: ductile fracture. Int J Plast. 2012;36:34–49. https://doi.org/10.1016/j.ijplas.2012.03.003.

    Article  CAS  Google Scholar 

  20. Gu GY, Mohr D. Anisotropic Hosford–Coulomb fracture initiation model: theory and application. Eng Fract Mech. 2015;147:480–97. https://doi.org/10.1016/j.engfracmech.2015.08.004.

    Article  Google Scholar 

  21. Shen FH, Münstermann S, Lian JH. Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model. Eng Fract Mech. 2020;227: 106900. https://doi.org/10.1016/j.engfracmech.2020.106900.

    Article  Google Scholar 

  22. Li ZG, Yang HF, Liu JG. Comparative study on yield behavior and non-associated yield criteria of AZ31B and ZK61 M magnesium alloys. Mater Sci Eng A. 2019;759:329–45. https://doi.org/10.1016/j.msea.2019.05.053.

    Article  CAS  Google Scholar 

  23. Dunand M, Maertens AP, Luo M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part I: plasticity. Int J Plast. 2012;36:34–49. https://doi.org/10.1016/j.ijplas.2012.03.003.

    Article  CAS  Google Scholar 

  24. Qian LY, Ji WT, Sun CY, Fang G, Lian JH. Prediction of edge fracture during hole-flanging of advanced high-strength steel considering blanking pre-damage. Eng Fract Mech. 2021;248: 107721. https://doi.org/10.1016/j.engfracmech.2021.107721.

    Article  Google Scholar 

  25. Boyce BL, Kramer SLB, Fang HE, et al. The Sandia fracture challenge: blind round robin predictions of ductile tearing. Int J Fract. 2014;186(1–2):5–68. https://doi.org/10.1007/s10704-013-9904-6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support by the National Natural Science Foundation of China (No. 52275305, No.51805023), Beijing Natural Science Foundation (No. 3184056), and Fundamental Research Funds for the Central Universities (No. FRF-IDRY-20-024, No. FRF-TP-20-009A2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyun Qian or Heng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the research was conducted according to the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Xu, S., Li, H. et al. Influences of stress states and loading directions on the anisotropic fracture of magnesium alloy AZ31B sheet under tension-dominated forming conditions. Archiv.Civ.Mech.Eng 22, 213 (2022). https://doi.org/10.1007/s43452-022-00535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00535-0

Keywords

Navigation