Skip to main content
Log in

Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In order to fully characterize the plasticity and fracture of magnesium AZ31B-H24 sheets, a set of mechanical experiments (105 in total) were performed under different loading conditions, including monotonic uniaxial tension, notch tension, in-plane uniaxial compression, wide compression (or called biaxial compression), plane strain compression, through-thickness compression, in-plane shear, punch test, and uniaxial compression–tension reverse loading. Both the plastic strain histories and stress responses were obtained under the above loading conditions, which give a comprehensive picture of mechanical behaviors of this material. An orthotropic yield criterion involving two linear anisotropic transformation tensors, CPB06ex2, in conjunction with its associated flow rule, and a modified semi-analytical Sachs isotropic hardening model was fully calibrated to describe both the anisotropy in plastic flow and tension–compression asymmetry in stress–strain behaviors. An all-strain based modified-Mohr–Coulomb fracture model, transformed from a stress triaxiality based model, was applied to describe the calibrated fracture locus. Applying a linear transformation to the plastic strain tensor, a non-conjugated anisotropic equivalent strain was proposed to characterize anisotropic fracture behaviors. Good correlations were achieved between experimental results and model predictions in terms of material yield strengths, strain hardening curves, plastic flow directions and ductile fracture strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Abu-Farha F, Hector LG, Khraisheh M (2009) Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61(8):48–56

    Article  Google Scholar 

  • Agnew SR, Tom CN, Brown DW, Holden TM, Vogel SC (2003) Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr Mater 48(8):1003–1008

    Article  Google Scholar 

  • Ambrogio G, Bruni C, Bruschi S, Filice L, Ghiotti A, Simoncini M (2008) Characterisation of AZ31B magnesium alloy formability in warm forming conditions. Int J Mater Form 1(1):205–208

    Article  Google Scholar 

  • Andar MO, Kuwabara T, Steglich D (2012) Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus. Mater Sci Eng A 549:82–92

    Article  Google Scholar 

  • ASTM E800-14 (2014) Standard Guide for Measurement of Gases Present or Generated During Fires, ASTM International, West Conshohocken. www.astm.org

  • Bai Y (2008) Effect of loading history on necking and fracture. Ph.D. thesis

  • Bai Y, Atkins T (2012) Tension and shear cracking during indentation of ductile materials by opposed wedges. Eng Fract Mech 96:49–60

    Article  Google Scholar 

  • Bai Y, Wierzbicki T (2010) Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract 161:1–20. doi:10.1007/s10704-009-9422-8

    Article  Google Scholar 

  • Ball E, Prangnell P (1994) Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr Metall Mater (US) 31(2):111–116

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98

    Article  Google Scholar 

  • Barnett MR (2007) Twinning and the ductility of magnesium alloys: part I: tension twins. Mater Sci Eng A 464(12):1–7

    Article  Google Scholar 

  • Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52(17):5093–5103

    Article  Google Scholar 

  • Barnett MR, Keshavarz Z, Ma X (2006) A semianalytical Sachs model for the flow stress of a magnesium alloy. Metall Mater Trans A 37(7):2283–2293

    Article  Google Scholar 

  • Beese AM (2011) Experimental investigation and constitutive modeling of the large deformation behavior of anisotropic steel sheets undergoing strain-induced phase transformation. Ph.D. thesis

  • Boba M (2014) Warm forming behaviour of ZEK100 and AZ31B magnesium alloy sheet. Ph.D. thesis

  • Boger RK, Wagoner RH, Barlat F, Lee MG, Chung K (2005) Continuous, large strain, tension/compression testing of sheet material. Int J Plast 21(12):2319–2343

    Article  Google Scholar 

  • Brown DW, Agnew SR, Bourke MAM, Holden TM, Vogel SC, Tom CN (2005) Internal strain and texture evolution during deformation twinning in magnesium. Mater Sci Eng A 399(12):1–12

    Article  Google Scholar 

  • Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20(11):2027–2045

    Article  Google Scholar 

  • Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22(7):1171–1194

    Article  Google Scholar 

  • Chaboche J (1977) Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bulletin de l’Academie Poloanise des Sciences. Serie des Sciences Techniques 25:33

    Google Scholar 

  • Chandola N, Lebensohn RA, Cazacu O, Revil-Baudard B, Mishra RK, Barlat F (2015) Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg. Int J Solids Struct 58(1):190–200

    Article  Google Scholar 

  • Elektron (2014) Magnesium Elektron Wrought Products North America, USA. http://www.magnesium-elektron.com/

  • Feng F, Huang S, Meng Z, Hu J, Lei Y, Zhou M, Yang Z (2014) A constitutive and fracture model for AZ31B magnesium alloy in the tensile state. Mater Sci Eng A 594:334–343

    Article  Google Scholar 

  • Ghaffari Tari D, Worswick MJ, Ali U, Gharghouri MA (2014) Mechanical response of AZ31B magnesium alloy: experimental characterization and material modeling considering proportional loading at room temperature. Int J Plast 55:247–267

    Article  Google Scholar 

  • Guo X, Chang K, Chen LQ, Zhou M (2012) Determination of fracture toughness of AZ31 Mg alloy using the cohesive finite element method. Eng Fract Mech 96:401–415

    Article  Google Scholar 

  • Hama T, Takuda H (2011) Crystal-plasticity finite-element analysis of inelastic behavior during unloading in a magnesium alloy sheet. Int J Plast 27(7):1072–1092

    Article  Google Scholar 

  • Hammer JT (2012) Plastic deformation and ductile fracture of Ti-6Al-4V under various loading conditions. Ph.D. thesis

  • Hasek V (1978) Research and theoretical description concerning the influences on the FLDs. Blech Rohre Profile 25:213–220

    Google Scholar 

  • Jain A, Agnew SR (2007) Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater Sci Eng A 462(12):29–36

    Article  Google Scholar 

  • Jia Y, Long X, Bai Y (2012) Experimental study on mechanical properties of AZ31B-H24 magnesium alloy sheets uder multi-axial loading conditions. J Automot Saf Energy 3(4):390–400

    Google Scholar 

  • Jia Y, Long X, Wang K, Bai Y (2013) Calibration of plasticity and fracture of magnesium alloy sheets under biaxial loading conditions. In: International symposium on plasticity and its current applications

  • Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  • Kaya S, Altan T, Groche P, Klpsch C (2008) Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test. Int J Mach Tools Manuf 48(5):550–557

    Article  Google Scholar 

  • Kelley E, Hosford W (1968) The deformation characteristics of textured magnesium. Trans Met Soc AIME 242:654–661

    Google Scholar 

  • Khan AS, Pandey A, Gnupel-Herold T, Mishra RK (2011) Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int J Plast 27(5):688–706

    Article  Google Scholar 

  • Kim D-G, Son H-T, Kim D-W, Kim Y-H, Lee K-M (2011) Effect of cross-roll angle on microstructures and mechanical properties during cross-roll rolling in AZ31 alloys. Mater Trans 52(12):2274–2277

    Article  Google Scholar 

  • Kim HJ, Choi SC, Lee KT, Kim HY (2008a) Experimental determination of forming limit diagram and springback characteristics of AZ31B Mg alloy sheets at elevated temperatures. Mater Trans 49(5):1112–1119

    Article  Google Scholar 

  • Kim J, Ryou H, Kim D, Kim D, Lee W, Hong S-H, Chung K (2008b) Constitutive law for AZ31B Mg alloy sheets and finite element simulation for three-point bending. Int J Mech Sci 50(1011):1510–1518

    Article  Google Scholar 

  • Kim JH, Lee M-G, Ryou H, Chung K, Youn JR, Kang TJ (2008c) Development of nonlinear constitutive laws for anisotropic and asymmetric fiber reinforced composites. Polym Compos 29(2):216–228

    Article  Google Scholar 

  • Kurukuri S, Worswick MJ, Ghaffari Tari D, Mishra RK, Carter JT (2014) Rate sensitivity and tension–compression asymmetry in AZ31B magnesium alloy sheet. Philos Trans A Math Phys Eng Sci 372(2015):20130216

    Article  Google Scholar 

  • Lee M-G, Wagoner RH, Lee JK, Chung K, Kim HY (2008) Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets. Int J Plast 24(4):545–582

    Article  Google Scholar 

  • Lee MG, Kim SJ, Wagoner RH, Chung K, Kim HY (2009) Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: application to sheet springback. Int J Plast 25(1):70–104

    Article  Google Scholar 

  • Li M, Lou X, Kim J, Wagoner R (2010) An efficient constitutive model for room-temperature, low-rate plasticity of annealed Mg AZ31B sheet. Int J Plast 26(6):820–858

    Article  Google Scholar 

  • Lou X, Li M, Boger R, Agnew S, Wagoner R (2007) Hardening evolution of AZ31B Mg sheet. Int J Plast 23(1):44–86

    Article  Google Scholar 

  • Lou Y, Huh H (2013) Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation. J Mater Process Technol 213(8):1284–1302

    Article  Google Scholar 

  • Luo M, Dunand M, Mohr D (2012) Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading part II: Ductile fracture. Int J Plast 32–33:36–58

    Article  Google Scholar 

  • Maksoud IA, Ahmed H, Rdel J (2009) Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater Sci Eng A 504(12):40–48

    Article  Google Scholar 

  • Mekonen MN, Steglich D, Bohlen J, Letzig D, Mosler J (2012) Mechanical characterization and constitutive modeling of Mg alloy sheets. Mater Sci Eng A 540:174–186

    Article  Google Scholar 

  • Mohr D, Oswald S (2008) A new experimental technique for the multi-axial testing of advanced high strength steel sheets. Exp Mech 48(1):65–77

    Article  Google Scholar 

  • Murakoso S, Kuwabara T (2009) Measurement and analysis of ultra-thin austenitic stainless steel sheet under biaxial tensile loading and in-plane reverse loading. J Solid Mech Mater Eng 3(12):1330–1339

    Article  Google Scholar 

  • Nguyen N-T, Lee M-G, Kim JH, Kim HY (2013) A practical constitutive model for AZ31B Mg alloy sheets with unusual stressstrain response. Finite Elem Anal Des 76:39–49

    Article  Google Scholar 

  • Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity titanium: experimental characterization and constitutive modeling. Int J Plast 26(4):516–532

    Article  Google Scholar 

  • Park J, Lee J, You B, Choi S, Kim Y (2007) Plastic deformation characteristics of AZ31 magnesium alloy sheets at elevated temperature. In: AIP conference proceedings vol 908(1), pp 1269–1274

  • Piao K, Chung K, Lee M-G, Wagoner R (2012) Twinning-slip transitions in Mg AZ31B. Metall Mater Trans A 43(9):3300–3313

    Article  Google Scholar 

  • Plunkett B, Cazacu O, Barlat F (2008) Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int J Plast 24(5):847–866

    Article  Google Scholar 

  • Revil-Baudard B, Chandola N, Cazacu O, Barlat F (2014) Correlation between swift effects and tension compression asymmetry in various polycrystalline materials. J Mech Phys Solids 70:104–115

    Article  Google Scholar 

  • Reyes A, Eriksson M, Lademo OG, Hopperstad OS, Langseth M (2009) Assessment of yield and fracture criteria using shear and bending tests. Mater Des 30(3):596–608

    Article  Google Scholar 

  • Roberts C (1960) Magnesium and its alloys. Wiley, New York

    Google Scholar 

  • Rousselier G, Barlat F, Yoon JW (2009) A novel approach for anisotropic hardening modeling. Part I: theory and its application to finite element analysis of deep drawing. Int J Plast 25(12):2383–2409

    Article  Google Scholar 

  • Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int J Plast 19(10):1843–1864

    Article  Google Scholar 

  • Steglich D, Brocks W, Bohlen J, Barlat F (2011) Modelling direction-dependent hardening in magnesium sheet forming simulations. Int J Mater Form 4(2):243–253

    Article  Google Scholar 

  • Steglich D, Jeong Y, Andar MO, Kuwabara T (2012) Biaxial deformation behaviour of AZ31 magnesium alloy: crystal-plasticity-based prediction and experimental validation. Int J Solids Struct 49(25):3551–3561

    Article  Google Scholar 

  • Steglich D, Tian X, Bohlen J, Kuwabara T (2014) Mechanical testing of thin sheet magnesium alloys in biaxial tension and uniaxial compression. Exp Mech 54(7):1247–1258

    Article  Google Scholar 

  • Vial C, Hosford WF, Caddell RM (1983) Yield loci of anisotropic sheet metals. Int J Mech Sci 25(12):899–915

    Article  Google Scholar 

  • Walters C (2009) Development of a punching technique for Ductile fracture testing over a wide range of stress states and strain rates. Ph.D. thesis

  • Wang H, Wu PD, Wang J, Tom CN (2013) A crystal plasticity model for hexagonal close packed (hcp) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52

    Article  Google Scholar 

  • Yan YQ, Zhang H, Chen Q, Zhong H, Weng W (2007) Microstructures, tensile properties and forming process of AZ31 alloy sheets. In: Materials science forum, vol 546, pp 241–244. Trans Tech Publ

  • Yoshida F, Uemori T, Fujiwara K (2002) Elasticplastic behavior of steel sheets under in-plane cyclic tensioncompression at large strain. Int J Plast 18(56):633–659

    Article  Google Scholar 

Download references

Acknowledgments

Thanks due to Dr. Meng Luo and Dr. Kai Wang of MIT and Mr. Yangyang Qiao of UCF for assistance in testing. Thanks are also due to Daniela Fugon and Dr. Gregory Freihofer of UCF in coordinating testing schedule. Partial financial supports from Volkswagen (Germany), State Key Laboratory of Automotive Safety and Energy, Tsinghua University (Beijing, China), and UCF are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqian Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Bai, Y. Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions. Int J Fract 197, 25–48 (2016). https://doi.org/10.1007/s10704-015-0057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0057-7

Keywords

Navigation