Skip to main content

Advertisement

Log in

Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes.

Methods

UUO was induced in 10–12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6–8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA.

Results

After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes.

Conclusion

Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Luyckx VA, Al-Aly Z, Bello AK, Bellorin-Font E, Carlini RG, Fabian J, et al. Sustainable Development Goals relevant to kidney health: an update on progress. Nat Rev Nephrol. 2021;17(1):15–32.

    Article  PubMed  Google Scholar 

  2. Chang PY, Chien LN, Lin YF, Wu MS, Chiu WT, Chiou HY. Risk factors of gender for renal progression in patients with early chronic kidney disease. Medicine (Baltimore). 2016;95(30): e4203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chesnaye NC, Dekker FW, Evans M, Caskey FJ, Torino C, Postorino M, et al. Renal function decline in older men and women with advanced chronic kidney disease-results from the EQUAL study. Nephrol Dial Transpl. 2021;36(9):1656–63.

    Article  CAS  Google Scholar 

  4. Katz-Greenberg G, Shah S. Sex and gender differences in kidney transplantation. Semin Nephrol. 2022;42(2):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest. 2019;129(5):1818–26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abramicheva PA, Plotnikov EY. Hormonal regulation of renal fibrosis. Life. 2022;12(5):737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail. 2021;43(1):619–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahmed SB, Culleton BF, Tonelli M, Klarenbach SW, Macrae JM, Zhang J, et al. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 2008;74(3):370–6.

    Article  CAS  PubMed  Google Scholar 

  10. Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, Pedraza-Chaverri J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules. 2019;9(4):141.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vaughan ED, Marion D, Poppas DP, Felsen D. Pathophysiology of unilateral ureteral obstruction: studies from Charlottesville to New York. J Urol. 2004;172(6 Part 2):2563–9.

  12. Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145–52.

    Article  PubMed  Google Scholar 

  13. Dendooven A, Ishola DA Jr, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, et al. Oxidative stress in obstructive nephropathy. Int J Exp Pathol. 2011;92(3):202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hosseinian S, Rad AK, Bideskan AE, Soukhtanloo M, Sadeghnia H, Shafei MN, et al. Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats. Pharmacol Rep. 2017;69(4):648–57.

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Qian J, Zhao X, Xing C, Sun B. β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. J Pharmacol Sci. 2017;133(4):203–13.

    Article  CAS  PubMed  Google Scholar 

  16. Klahr S, Harris K, Purkerson ML. Effects of obstruction on renal functions. Pediatr Nephrol. 1988;2:34–42.

    Article  CAS  PubMed  Google Scholar 

  17. Song J, He Y, Luo C, Feng B, Ran F, Xu H, et al. New progress in the pharmacology of protocatechuic acid: a compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res. 2020;161: 105109.

    Article  CAS  PubMed  Google Scholar 

  18. Khan AK, Rashid R, Fatima N, Mahmood S, Mir S, Khan S, et al. Pharmacological activities of protocatechuic acid. Acta Pol Pharm. 2015;72(4):643–50.

    CAS  PubMed  Google Scholar 

  19. Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N. Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med. 2015;2015: 593902.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: old wine in a new bottle. Evid Based Complement Alternat Med. 2021;2021:6139308.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Sun X, Zhou F, Xiao S, Zhong L, Hu S, et al. Protocatechuic acid alleviates dextran-sulfate-sodium-induced ulcerative colitis in mice via the regulation of intestinal flora and ferroptosis. Molecules. 2023;28(9):3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan L, Li J, Chen WB, Wu GQ. Beneficial effects of protocatechuic acid on diabetic retinopathy in streptozocin-induced diabetic rats. Int J Ophthalmol. 2023;16(6):855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abdelrahman RS, El-Tanbouly GS. Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol Appl Pharmacol. 2022;440: 115931.

    Article  CAS  PubMed  Google Scholar 

  24. Song H, Ren J. Protocatechuic acid attenuates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts through inhibiting the NOX4/ROS/p38 signaling pathway. Phytother Res. 2019;33(9):2440–7.

    Article  CAS  PubMed  Google Scholar 

  25. Xiang Y, Huang R, Wang Y, Han S, Qin X, Li Z, et al. Protocatechuic acid ameliorates high fat diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res. 2023;67(3): e2200244.

    Article  PubMed  Google Scholar 

  26. Kale S, Sarode LP, Kharat A, Ambulkar S, Prakash A, Sakharkar AJ, et al. Protocatechuic acid prevents early hour ischemic reperfusion brain damage by restoring imbalance of neuronal cell death and survival proteins. J Stroke Cerebrovasc Dis. 2021;30(2): 105507.

    Article  PubMed  Google Scholar 

  27. Salama AAA, Elgohary R, Fahmy MI. Protocatechuic acid ameliorates lipopolysaccharide-induced kidney damage in mice via downregulation of TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. J Appl Toxicol. 2023;43(8):1119–29.

    Article  CAS  PubMed  Google Scholar 

  28. Yüksel M, Yıldar M, Başbuğ M, Çavdar F, Çıkman Ö, Akşit H, et al. Does protocatechuic acid, a natural antioxidant, reduce renal ischemia reperfusion injury in rats? Ulus Travma Acil Cerrahi Derg. 2017;23(1):1–6.

    PubMed  Google Scholar 

  29. Gao L, Wu WF, Dong L, Ren GL, Li HD, Yang Q, et al. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing nox-mediated oxidative stress and renal inflammation. Front Pharmacol. 2016;7:479.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bai Y, Wang W, Yin P, Gao J, Na L, Sun Y, et al. Ruxolitinib alleviates renal interstitial fibrosis in UUO mice. Int J Biol Sci. 2020;16(2):194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makled MN, El-Kashef DH. Saroglitazar attenuates renal fibrosis induced by unilateral ureteral obstruction via inhibiting TGF-β/Smad signaling pathway. Life Sci. 2020;253: 117729.

    Article  CAS  PubMed  Google Scholar 

  32. Kassab RB, Theyab A, Al-Ghamdy AO, Algahtani M, Mufti AH, Alsharif KF, et al. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environ Sci Pollut Res Int. 2022;29(8):12208–21.

    Article  CAS  PubMed  Google Scholar 

  33. Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics. 2017;14(11):1037–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaffé M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Biol Chem. 1886;10(5):391–400.

    Article  Google Scholar 

  35. Fernandes R, Garver H, Harkema JR, Galligan JJ, Fink GD, Xu H. Sex differences in renal inflammation and injury in high-fat diet-fed dahl salt-sensitive rats. Hypertension. 2018;72(5):e43–52.

    Article  CAS  PubMed  Google Scholar 

  36. Hosszu A, Fekete A, Szabo AJ. Sex differences in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2020;319(2):F149–54.

    Article  CAS  PubMed  Google Scholar 

  37. Ciarambino T, Crispino P, Giordano M. Gender and renal insufficiency: opportunities for their therapeutic management? Cells. 2022;11(23):3820.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J Endocrinol. 2010;206(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev. 2023;211:111797.

  40. Li L, Liu S, Tang H, Song S, Lu L, Zhang P, et al. Effects of protocatechuic acid on ameliorating lipid profiles and cardio-protection against coronary artery disease in high fat and fructose diet fed in rats. J Vet Med Sci. 2020;82(9):1387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12(6):8010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soji K, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T. Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction. PLoS ONE. 2018;13(8): e0202409.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cavaglieri RC, Day RT, Feliers D, Abboud HE. Metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. Mol Cell Endocrinol. 2015;412:116–22.

    Article  CAS  PubMed  Google Scholar 

  44. Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res. 2020;222:41–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petrov G, Regitz-Zagrosek V, Lehmkuhl E, Krabatsch T, Dunkel A, Dandel M, et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation. 2010;122(11 Suppl):S23–8.

    PubMed  Google Scholar 

  46. Lee HW, Eghbali-Webb M. Estrogen enhances proliferative capacity of cardiac fibroblasts by estrogen receptor- and mitogen-activated protein kinase-dependent pathways. J Mol Cell Cardiol. 1998;30(7):1359–68.

    Article  CAS  PubMed  Google Scholar 

  47. Weinberg EO, Thienelt CD, Katz SE, Bartunek J, Tajima M, Rohrbach S, et al. Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol. 1999;34(1):264–73.

    Article  CAS  PubMed  Google Scholar 

  48. Liu QH, Li DG, Huang X, Zong CH, Xu QF, Lu HM. Suppressive effects of 17beta-estradiol on hepatic fibrosis in CCl4-induced rat model. World J Gastroenterol. 2004;10(9):1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guy J, Peters MG. Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol Hepatol (N Y). 2013;9(10):633–9.

    PubMed  Google Scholar 

  50. Wang YJ, Wang SS, Bickel M, Guenzler V, Gerl M, Bissell DM. Two novel antifibrotics, HOE 077 and Safironil, modulate stellate cell activation in rat liver injury: differential effects in males and females. Am J Pathol. 1998;152(1):279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwan G, Neugarten J, Sherman M, Ding Q, Fotadar U, Lei J, et al. Effects of sex hormones on mesangial cell proliferation and collagen synthesis. Kidney Int. 1996;50(4):1173–9.

    Article  CAS  PubMed  Google Scholar 

  52. Cui B, Yang Z, Wang S, Guo M, Li Q, Zhang Q, et al. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie. 2021;76(5):232–8.

    CAS  PubMed  Google Scholar 

  53. Li L, Ma H, Zhang Y, Jiang H, Xia B, Sberi HA, et al. Protocatechuic acid reverses myocardial infarction mediated by β-adrenergic agonist via regulation of Nrf2/HO-1 pathway, inflammatory, apoptotic, and fibrotic events. J Biochem Mol Toxicol. 2023;37(3): e23270.

    Article  CAS  PubMed  Google Scholar 

  54. Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol. 2012;302(11):F1351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Gao M, Li J, Sun J, Wu R, Han D, et al. MMP-9-positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiol (Oxf). 2019;227(2): e13317.

    Article  PubMed  Google Scholar 

  56. Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, et al. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol. 2013;2(3):84–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93(14):7069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trentini A, Manfrinato MC, Castellazzi M, Bellini T. Sex-related differences of matrix metalloproteinases (MMPs): new perspectives for these biomarkers in cardiovascular and neurological diseases. J Pers Med. 2022;12(8):1196.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin HH, Chen JH, Chou FP, Wang CJ. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br J Pharmacol. 2011;162(1):237–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf). 2013;207(4):663–72.

    Article  CAS  PubMed  Google Scholar 

  61. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43.

    Article  CAS  PubMed  Google Scholar 

  62. Latoch E, Konończuk K, Taranta-Janusz K, Muszyńska-Rosłan K, Szymczak E, Wasilewska A, et al. Urine NGAL and KIM-1: tubular injury markers in acute lymphoblastic leukemia survivors. Cancer Chemother Pharmacol. 2020;86(6):741–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiong Y, Chang Y, Hao J, Zhang C, Yang F, Wang Z, et al. Eplerenone attenuates fibrosis in the contralateral kidney of uuo rats by preventing macrophage-to-myofibroblast transition. Front Pharmacol. 2021;12:620433.

    Article  Google Scholar 

  64. Jover E, Matilla L, Martín-Núñez E, Garaikoetxea M, Navarro A, Fernández-Celis A, et al. Sex-dependent expression of neutrophil gelatinase-associated lipocalin in aortic stenosis. Biol Sex Differ. 2022;13(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Viñas Jose L, Porter Christopher J, Douvris A, Spence M, Gutsol A, Zimpelmann Joseph A, et al. Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury. Clin Sci (Lond). 2020;134(14):1887–909.

    Article  PubMed  Google Scholar 

  66. Jin Y, Shao X, Sun B, Miao C, Li Z, Shi Y. Urinary kidney injury molecule-1 as an early diagnostic biomarker of obstructive acute kidney injury and development of a rapid detection method. Mol Med Rep. 2017;15(3):1229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Niño MD, Sanz AB, Ramos AM, et al. Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol. 2014;46:765–76.

    Article  PubMed  Google Scholar 

  68. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med. 2021;172:65–81.

    Article  CAS  PubMed  Google Scholar 

  69. Liu M, Zhu Y, Sun Y, Wen Z, Huang S, Ding G, et al. MnTBAP therapy attenuates the downregulation of sodium transporters in obstructive kidney disease. Oncotarget. 2018;9(1):394–403.

    Article  PubMed  Google Scholar 

  70. Barp J, Araújo AS, Fernandes TR, Rigatto KV, Llesuy S, Belló-Klein A, et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res. 2002;35(9):1075–81.

    Article  CAS  PubMed  Google Scholar 

  71. Matarrese P, Colasanti T, Ascione B, Margutti P, Franconi F, Alessandri C, et al. Gender disparity in susceptibility to oxidative stress and apoptosis induced by autoantibodies specific to RLIP76 in vascular cells. Antioxid Redox Signal. 2011;15(11):2825–36.

    Article  CAS  PubMed  Google Scholar 

  72. Bhatia K, Elmarakby AA, El-Remessy AB, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2012;302(2):R274–82.

    Article  CAS  PubMed  Google Scholar 

  73. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–32.

    Article  PubMed  Google Scholar 

  74. Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2020;10(1):2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Faria CM, Nazaré AC, Petrônio MS, Paracatu LC, Zeraik ML, Regasini LO, et al. Protocatechuic acid alkyl esters: hydrophobicity as a determinant factor for inhibition of NADPH oxidase. Curr Med Chem. 2012;19(28):4885–93.

    Article  PubMed  Google Scholar 

  76. Graton ME, Ferreira B, Troiano JA, Potje SR, Vale GT, Nakamune A, et al. Comparative study between apocynin and protocatechuic acid regarding antioxidant capacity and vascular effects. Front Physiol. 2022;13:1047916.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Abbas NAT, El Salem A, Awad MM. Empagliflozin, SGLT(2) inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(12):1347–60.

    Article  CAS  PubMed  Google Scholar 

  78. Wyczanska M, Lange-Sperandio B. DAMPs in unilateral ureteral obstruction. Front Immunol. 2020;11: 581300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boswell R, Yard B, Schrama E, Van Es L, Daha M, Van der Woude F. Interleukin 6 production by human proximal tubular epithelial cells in vitro: analysis of the effects of interleukin-1α (IL-1α) and other cytokines. Nephrol Dial Transplant. 1994;9(6):599–606.

    Article  CAS  PubMed  Google Scholar 

  80. Fan J-M, Huang X-R, Ng Y-Y, Nikolic-Paterson DJ, Mu W, Atkins RC, et al. Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-β1-dependent mechanism in vitro. Am J Kidney Dis. 2001;37(4):820–31.

    Article  CAS  PubMed  Google Scholar 

  81. Jones LK, O’Sullivan KM, Semple T, Kuligowski MP, Fukami K, Ma FY, et al. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transplant. 2009;24(10):3024–32.

    Article  CAS  PubMed  Google Scholar 

  82. Gu L, Wang Y, Yang G, Tilyek A, Zhang C, Li S, et al. Ribes diacanthum Pall (RDP) ameliorates UUO-induced renal fibrosis via both canonical and non-canonical TGF-β signaling pathways in mice. J Ethnopharmacol. 2019;231:302–10.

    Article  CAS  PubMed  Google Scholar 

  83. Yang J, Chen J, Yan J, Zhang L, Chen G, He L, et al. Effect of interleukin 6 deficiency on renal interstitial fibrosis. PLoS ONE. 2012;7(12): e52415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen W, Yuan H, Cao W, Wang T, Chen W, Yu H, et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics. 2019;9(14):3980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM, et al. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol. 2011;22(1):165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chook CYB, Cheung YM, Ma KY, Leung FP, Zhu H, Niu QJ, et al. Physiological concentration of protocatechuic acid directly protects vascular endothelial function against inflammation in diabetes through Akt/eNOS pathway. Front Nutr. 2023;10:1060226.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li P, Wang X, Wang H, Wu Y-N. High performance liquid chromatographic determination of phenolic acids in fruits and vegetables. Biomed Environ Sci. 1993;6(4):389–98.

    CAS  PubMed  Google Scholar 

  89. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99–114.

    Article  PubMed  Google Scholar 

  90. Zhang KJ, Wu Q, Jiang SM, Ding L, Liu CX, Xu M, et al. Pyroptosis: a new frontier in kidney diseases. Oxid Med Cell Longev. 2021;2021:6686617.

    PubMed  PubMed Central  Google Scholar 

  91. Xu Y, Ruan S, Wu X, Chen H, Zheng K, Fu B. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med. 2013;31(3):628–36.

    Article  CAS  PubMed  Google Scholar 

  92. Cachat F, Lange-Sperandio B, Chang AY, Kiley SC, Thornhill BA, Forbes MS, et al. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney Int. 2003;63(2):564–75.

    Article  PubMed  Google Scholar 

  93. Ortona E, Matarrese P, Malorni W. Taking into account the gender issue in cell death studies. Cell Death Dis. 2014;5(3):e1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muley MM, Thakare VN, Patil RR, Bafna PA, Naik SR. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci. 2013;93(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  95. Adedara IA, Fasina OB, Ayeni MF, Ajayi OM, Farombi EO. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem Toxicol. 2019;125:170–81.

    Article  CAS  PubMed  Google Scholar 

  96. Yamabe N, Park JY, Lee S, Cho E-J, Lee S, Kang KS, et al. Protective effects of protocatechuic acid against cisplatin-induced renal damage in rats. J Funct Foods. 2015;19:20–7.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by intramural grants from Augusta University awarded to A.A.E. and B.B and grant from the Egyptian Cultural Affairs and Missions Sector (Cairo, Egypt) in cooperation with the Egyptian Cultural and Educational Bureau (Washington DC, USA) awarded to K.M.S.

Author information

Authors and Affiliations

Authors

Contributions

KMS contributed to mice surgical operations, biological sample collection, measurements, data analysis and manuscript drafting. ELS and SEN contributed to US Doppler measurements, biological sample collection and manuscript review. GMS, MEA, RRA and BB contributed to work conceptualization and manuscript review. AE contributed to experimental design, data analysis, manuscript drafting and review. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmed A. Elmarakby.

Ethics declarations

Conflict of interest

Authors declare no competing interests that could have affected the conclusion of the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, K.M., Salles, É.L., Naeini, S.E. et al. Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury. Pharmacol. Rep 76, 98–111 (2024). https://doi.org/10.1007/s43440-023-00565-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00565-2

Keywords

Navigation