Skip to main content

Advertisement

Log in

Empagliflozin, SGLT2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a global healthcare problem; however until now, there is no effective treatment that can stop its progression. In this study, we aimed to investigate the effect of empagliflozin, a sodium-glucose linked transporter-2 inhibitor (SGLT2I) in a model of unilateral ureteric obstruction (UUO) in rats, as a model of progressive renal interstitial fibrosis in vivo and the possibility of inclusion of klotho protein. Rats were randomly divided into five groups: group 1: control group, group 2: UUO untreated group, group 3: prophylactic SGLT2I treatment before UUO, group 4: immediate SGLT2I treatment after UUO, and group 5: delayed SGLT2I treatment (this group received distilled water 1 week after UUO then empagliflozin for 2 weeks). At the end of the experiment period, animals were sacrificed, and kidney fibrotic and inflammatory parameters were measured. Also kidney sections were examined histopathologically for CTGF expression. UUO resulted in renal dysfunction and fibrosis through upregulating inflammatory cascade (NF-κB-TLR4) as well as many fibrotic pathways (as TGF-β1, αSMA, Wnt, CTGF, and fibronectin) with significant reduction in the klotho protein expression. We hypothesized that both prophylactic and immediate treatment with empagliflozin after UUO in rats exert more renoprotective effect in comparison with delayed treatment via enhancement of renal klotho expression and activity, for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SGLT2I:

Sodium-glucose linked transponter-2 inhibitors

UUO:

Unilateral ureteric obstruction

TNF-α:

Tumor necrosis factor-α

TGF-β1 :

Transforming growth factor beta

NF-κB:

Nuclear factor κB

TLR4:

Toll-like receptor-4

α-SMA:

Alpha-smooth muscle actin

CTGF:

Connective tissue growth factor

References

  • Asai O, Nakatani K, Tanaka T, Sakan H, Imura A, Yoshimoto S, Samejima KI, Yamaguchi Y, Matsui M, Akai Y, Konishi N, Iwano M, Nabeshima Y, Saito Y (2012) Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int 81(6):539–547

    Article  CAS  Google Scholar 

  • Bancroft JD, Gamble M (2002) Theory and practice of histological techniques. 5th.Ed. Churchill Livingstone Pub, Edinburgh, pp 175–175

    Google Scholar 

  • Barker SL, Pastor J, Carranza D, Quinones H, Griffith C, Goetz R, Mohammadi M, Ye J, Zhang J et al (2015) The demonstration of alpha klotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 3:228–233

    Google Scholar 

  • Berry MN, Mazzachi RD, Pejakovic M, Peake MJ (1988) Enzymatic determination of sodium in serum. Clin Chem 34:2295–2298

    CAS  PubMed  Google Scholar 

  • Brobey RK, German D, Sonsalla PK, Gurnani P, Pastor J, Hsieh CC, Papaconstantinou J, Foster PP, Kuro-o M, Rosenblatt KP (2015) Klotho protects dopaminergic neuron oxidant-induced degeneration by modulating ASK1 and P38 MAPK signaling pathways. PLoS One 10:e0139914

    Article  Google Scholar 

  • Chevalier RL, Forbes MS, Thornhill BA (2009) Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75:1145–1152. https://doi.org/10.1038/ki.2009.86

    Article  PubMed  Google Scholar 

  • Compbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR, Meldrum KK (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69

    Article  Google Scholar 

  • Davalos-Misslitz ACM, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G, Förster R (2007) Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol 37:613–622

    Article  CAS  Google Scholar 

  • Deng M, Lou Y, Li Y, Yang Q, Deng X, Wu P, Ma H (2015) Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the rho associated called-coil kinase. Signal Pathway Mol Med Rep 12:45–54

    Article  CAS  Google Scholar 

  • Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA, Kuro-o M (2011) Klotho inhibits transforming growth factor-beta 1 (TGF-beta 1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665

    Article  CAS  Google Scholar 

  • Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301

    Article  CAS  Google Scholar 

  • Gallo LA, Ward MS, Fotherngham AK, Zhuang A, Borg DJ, Flemming NB et al (2016) Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Res 6:26428

    CAS  Google Scholar 

  • Gembardt F, Bartaun C, Jarzebaska N, Mayoux E, Todorov VT, Hohenstein B et al (2014) The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol 307:F317–F325

    Article  CAS  Google Scholar 

  • Hewitson TD (2009) Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol 296:F1239–F1244

    Article  CAS  Google Scholar 

  • Hodgkins KS, Schnaper HW (2012) Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27(6):901–902

    Article  Google Scholar 

  • Hu MC, Shi M, Zhang J, Quinones H, Juro-O M, MOE OW (2010) Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251

    Article  CAS  Google Scholar 

  • Hu MC, Shi M, Gillings N, Flores B, TYakashi M et al (2017) Recombinant alpha klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 91:1104–1114

    Article  CAS  Google Scholar 

  • Huang J, Chen Z, Li J, Chen Q, Li J, Gong W, Huang J, Liu P, Huang H (2017) Protein kinase GK2a catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-kappa B signaling pathway. Biochempharmacol 132:102–117

    CAS  Google Scholar 

  • Ji H, Bachmanov AA (2007) Differences in postingestive metabolism of glutamate and glycine between C57BL/6ByJ and 129P3/J mice. Physiol Genomics 31(3):475–482

    Article  CAS  Google Scholar 

  • Kuro-O M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  Google Scholar 

  • Lei C, Ming LS, Deng L, Yi-Ping Z, Xing JW et al (2017) Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of toll-like receptor 4 signaling. Oncotarget 8(13):21044–21053

    Google Scholar 

  • Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Phohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    Article  CAS  Google Scholar 

  • Libin M, Hua L, Shuchao Z, Xiaoling X, ·Kean C et al. (2018) Emodin ameliorates renal fibrosis in rats via TGF-β1/Smad signaling pathway and function study of Smurf 2. Int Urol Nephrol 50:373–382. https://doi.org/10.1007/s11255-017-1757-x

    Article  Google Scholar 

  • Lin Y, Sun Z (2015) In vivo pancreatic beta cell-specific expression of antiaging gene klotho, a novel approach for preserving beta-cells in type 2 diabetes. Diabetes 64:1444–1458

    Article  CAS  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/B-catenin signaling: components mechanisms and diseases. Dev Cell 17(1):9–26

    Article  CAS  Google Scholar 

  • Mesar I, Kes P, Jukie NB (2012) A role of WNT in kidney development and function. Acta Media Croatica 66(Suppl. 2):56–58

    Google Scholar 

  • Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, Chen J, He J (2015) A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int 88(5):950–957

    Article  Google Scholar 

  • Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S (2015) Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and anti-fibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 2 47(09):686–692. https://doi.org/10.1055/s-0034-1395609

    Article  CAS  Google Scholar 

  • Panchapakesan V, Pegg K, Gross S, Komala MG, Mudaliar H, Forrbes J, Pollock C, Mather A (2013) Effects of SGLT2 inhibition in human kidney proximal tubular cells-renoprotection in diabetic nephropathy? PLoS One 8(2): e544423-2

    Article  CAS  Google Scholar 

  • Qi M, Yin L, Xu L, Tao X, Qi Y, Han X, Wang C, Xu Y, Sun H, Liu K, Peng J (2016) Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-71/TLR4/MayD88 signaling pathway. Pharmacol Res 111:509–522

    Article  CAS  Google Scholar 

  • Radovic N, Aralica G, Liubanovic DG, Jelecv U, Kontek M (2014) Effect of unilateral ureteral obstruction and anti-angiotensin II treatment on renal tubule cell apoptosis and intestinal fibrosis in rats. Coll Antropol, Jun 38(2):583–588

    Google Scholar 

  • Ravikumar P, Ye J, Zhang J, Pinch SN, Hu MC, Kuro-O M et al (2014) Alpha-klotho protects against oxidative damage in pulmonary epithelia. Am J Physiol Lung Cell Mol Physiol 307:L566–L575

    Article  CAS  Google Scholar 

  • Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ (1997) Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J Clin Pathol 50:123–127

    Article  CAS  Google Scholar 

  • Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N (2012) Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 303:F1641–F1651

    Article  CAS  Google Scholar 

  • Schinner E, Schramm A, Kees F, Hofmann F, Schlossmann J (2013) The cyclic GMP-dependent protein kinase Ialpha suppresses kidney fibrosis. Kidney Int 84:1198–1206

    Article  CAS  Google Scholar 

  • Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252

    Article  CAS  Google Scholar 

  • Shi M, Flores B, Gillings N, Bian A, Cho HJ, Yan S et al (2015) Alpha klotho mitigates progression of AK1 to CKD through activation of autophagy. J Am Soc Nephrol 27:2331–2345

    Article  Google Scholar 

  • Solez K, Axelsen RA, Benediktsson H, Burdick JF, Cohen AH, Colvin RB, Croker BP, Droz D, Dunnill MS, Halloran PF, Häyry P, Jennette JC, Keown PA, Marcussen N, Mihatsch MJ, Morozumi K, Myers BD, Nast CC, Olsen S, Racusen LC, Ramos EL, Rosen S, Sachs DH, Salomon DR, Sanfilippo F, Verani R, von Willebrand E, Yamaguchi Y (1993) International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int 44:411–422

    Article  CAS  Google Scholar 

  • Song Y, Li C, Cai L (2004) Fluvastatin prevents nephropathy likely through suppression of connective tissue growth factor-mediated extracellular matrix accumulation. Exp Mol Pathol 76:66–75

    Article  CAS  Google Scholar 

  • Sugiura H, Yoshida S, Shiohira S, Kohei J, Mitobe M, Kurosu H et al (2012) Reduced klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol Renal Physiol 302:F1252–F1264

    Article  CAS  Google Scholar 

  • Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee JK, Kamiya K, Kitaichi K, Yamamoto K, Ito M, Kondo T, Iino S, Inden Y, Hirai M, Murohara T, Kodama I, Nabeshima Y (2004) Sino arterial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109:1776–1782

    Article  Google Scholar 

  • Tucker PS, Scanlan AT, Dalbo VJ (2015) Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxidative Med Cell Long:806358, 8 pages

  • Wang D, Dai C, Li Y, Liu Y (2011) Canonical growth factor-β1-driven podocyte injury and proteinuria. Kidney Int 80(11):1159–1169

    Article  CAS  Google Scholar 

  • Wanner C, InZucchi SE, Lachin JM, Fitchelt D, von Eynatten M, Mattheus M et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:1801–1802

    Article  Google Scholar 

  • Wetzl V, Schinner E, Kees F, Faerber L, Schlossmann J (2017) Differences in renal antifibrotic Cgmp/Cgki-dependent signaling of serelaxin, zaprinast and their combination. Naunyn-Schmiedeberg Arch Pharmacol 390:939-948

  • Wolf L, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanely H et al (2008) A tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094–7105

    Article  CAS  Google Scholar 

  • Wu NL, Xie J, An SW, Oliver N, Barrezueta NX, Lin MH et al (2017) Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney Int 91:830–841

    Article  CAS  Google Scholar 

  • Yang K, Wang C, Nie L, Zho X, Gu J, Guan X, Wang S et al (2015) Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 26:2434–2446

    Article  CAS  Google Scholar 

  • Zeisberg M, Nelison EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834

    Article  CAS  Google Scholar 

  • Zhang D, Suin L, Xian W, Liu F, et al (2010) Low-dose paclitaxel ameliorates renal fibrosis in rat UUO model by inhibition of TGF-β/smad activity. Lab Investig 90: 436–447

    Article  CAS  Google Scholar 

  • Zhou L, Liu Y (2015) Wnt/B-catenin signaling and podocyte dysfunction ion proteinuria kidney disease. Nat Rev Nephrol 11:535–545

    Article  CAS  Google Scholar 

  • Zhou Y, Wu W (2017) The sodium-glucose-co-transporter 2 inhibitor empagliflozin, protects against diabetic cardiomyopathy by inhibition of endoplasmic reticulum stress pathway. Cell Physical Biochem 41(6):2503–2512

    Article  CAS  Google Scholar 

  • Zhou L, Li Y, Zhou D, Tan RJ, Liu Y (2013) Loss of klotho contributes to kidney injury by depression of wnt/β-catenin signaling. J Am Soc Nephrol 24:771–785

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang T, Wang X, Wei X, Chen Y, Guo L, Zhang J, Wang C (2015) Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways cell physical. Biochem 36:631–641

    CAS  Google Scholar 

  • Zhou D, Fu H, Zhang L, Zhang K, Min Y, et al (2017) Tubule-derived wnts are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol 28 https://doi.org/10.1681/ASN.2016080902

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the associate prof. Hayam Rashed, associate prof. of pathology, Zagazig University Egypt, for his kind help in histopathological examination.

Author information

Authors and Affiliations

Authors

Contributions

Noha A.T. Abbas, Mohammed M. Awad, and Amal El. Salem designed experiments. Noha A. T. Abbas and Amal El. Salem performed the experiments. Noha A. T. Abbas and Amal El. Salem wrote the paper. Mohammed M. Awad  revised and finalized the manuscript.

Corresponding author

Correspondence to Noha A. T. Abbas.

Ethics declarations

All experimental protocols were approved by the ethics committee of Zagazig University. The study was approved by the local Animal Ethical Committee of Zagazig University, Egypt. All experimental procedures were carried out in accordance with the guidelines set forth by the National Institutes of Health (USA).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, N.A.T., El. Salem, A. & Awad, M.M. Empagliflozin, SGLT2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression. Naunyn-Schmiedeberg's Arch Pharmacol 391, 1347–1360 (2018). https://doi.org/10.1007/s00210-018-1544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1544-y

Keywords

Navigation