Skip to main content
Log in

DNA scaffold assisted ectoine production in Escherichia coli

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

DNA scaffold that enhances the spatial proximity of enzymes and the local concentration of intermediates, is promising tools in optimizing heterologous metabolic pathways for target product biosynthesis. Here, we display the utility of a DNA scaffold system for the production of ectoine in E. coli MWZ003. Three fused enzymes EctA-ZFa, EctB-ZFb, and EctC-ZFc were firstly constructed by fusing enzymes of ectoine synthesis pathway with corresponding zinc finger domains. The copy number of the plasmid-expressing fusions was adapted by substitution of different replicons. Furthermore, a series of modifications were carried out on the DNA scaffold system through optimizing the spacer between enzyme binding sites, the binding direction of fusion enzymes, the repeating unit of DNA scaffolds, the stoichiometric ratio of enzyme binding sites, and the expression level of the rate-limiting enzyme. The optimized DNA scaffold system in the plasmid pFV30 involving use of pMB1 replicon, reverse binding, 11-bp spacer, 4 repeating units, stoichiometric ratio (1:2:2), and enhanced expression of EctB-ZFb increased the ectoine titer and yield, respectively, to 22.79 g/L and 0.65 g/g glucose with increase by 92% compared with that of the control strain. The post-translational strategy based on DNA scaffold was efficient in promoting heterologous synthesis of ectoine, which could also be used in combination with other genetic engineering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Kogure T, Inui M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl Microbiol Biotechnol. 2018;102(20):8685–705. https://doi.org/10.1007/s00253-018-9289-6.

    Article  CAS  PubMed  Google Scholar 

  2. Cen X, Liu Y, Zhu F, Liu D, Chen Z. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metab Eng. 2022;74:168–77. https://doi.org/10.1016/j.ymben.2022.10.012.

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava R, Sahoo L. Cowpea NAC transcription factors positively regulate cellular stress response and balance energy metabolism in yeast via reprogramming of biosynthetic pathways. ACS Synth Biol. 2021;10(9):2286–307. https://doi.org/10.1021/acssynbio.1c00208.

    Article  CAS  PubMed  Google Scholar 

  4. Henke NA, Frohwitter J, Peters-Wendisch P, Wendisch VF. Carotenoid production by recombinant Corynebacterium glutamicum: strain construction, cultivation, extraction, and quantification of carotenoids and terpenes. Methods Mol Biol. 2018;1852:127–41. https://doi.org/10.1007/978-1-4939-8742-9_8.

    Article  CAS  PubMed  Google Scholar 

  5. Xu W, Wang D, Fan J, Zhang L, Ma X, Yao J, Wang Y. Improving squalene production by blocking the competitive branched pathways and expressing rate-limiting enzymes in Rhodopseudomonas palustris. Biotechnol Appl Biochem. 2022;69(4):1502–8. https://doi.org/10.1002/bab.2222.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Wang Z, Chu J, Xi B, Zhuang Y. The glucose RQ-feedback control leading to improved erythromycin production by a recombinant strain Saccharopolyspora erythraea ZL1004 and its scale-up to 372-m3 fermenter. Bioprocess Biosyst Eng. 2015;38(1):105–12. https://doi.org/10.1007/s00449-014-1248-8.

    Article  CAS  PubMed  Google Scholar 

  7. Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME, Crowley MF. Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem. 2011;286(7):5614–23. https://doi.org/10.1074/jbc.M110.186031.

    Article  CAS  PubMed  Google Scholar 

  8. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol. 2009;27(8):753–9. https://doi.org/10.1038/nbt.1557.

    Article  CAS  PubMed  Google Scholar 

  9. Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332(6030):680–6. https://doi.org/10.1126/science.1198701.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science. 2010;328(5976):368–72. https://doi.org/10.1126/science.1182376.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yaniv O, Shimon LJ, Bayer EA, Lamed R, Frolow F. Scaffoldin-borne family 3b carbohydrate-binding module from the cellulosome of Bacteroides cellulosolvens: structural diversity and significance of calcium for carbohydrate binding. Acta Crystallogr D. 2011;67(Pt 6):506–15. https://doi.org/10.1107/S0907444911011322.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zeke A, Lukacs M, Lim WA, Remenyi A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol. 2009;19(8):364–74. https://doi.org/10.1016/j.tcb.2009.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA. Organization of intracellular reactions with rationally designed RNA assemblies. Science. 2011;333(6041):470–4. https://doi.org/10.1126/science.1206938.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnsek J, Tomsic N, Avbelj M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Bencina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa MP. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 2012;40(4):1879–89. https://doi.org/10.1093/nar/gkr888.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JH, Jung SC, le Bui M, Kang KH, Song JJ, Kim SC. Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microbiol. 2013;79(3):774–82. https://doi.org/10.1128/AEM.02578-12.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ponchon L, Dardel F. Recombinant RNA technology: the tRNA scaffold. Nat Methods. 2007;4(7):571–6. https://doi.org/10.1038/nmeth1058.

    Article  CAS  PubMed  Google Scholar 

  17. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399–408. https://doi.org/10.1038/nbt1029.

    Article  CAS  PubMed  Google Scholar 

  18. Chang HC, Kaiser CM, Hartl FU, Barral JM. De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria. J Mol Biol. 2005;353(2):397–409. https://doi.org/10.1016/j.jmb.2005.08.052.

    Article  CAS  PubMed  Google Scholar 

  19. Netzer WJ, Hartl FU. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature. 1997;388(6640):343–9. https://doi.org/10.1038/41024.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Res. 2009;37(2):506–15. https://doi.org/10.1093/nar/gkn962.

    Article  CAS  PubMed  Google Scholar 

  21. Negi S, Imanishi M, Matsumoto M, Sugiura Y. New redesigned zinc-finger proteins: design strategy and its application. Chemistry. 2008;14(11):3236–49. https://doi.org/10.1002/chem.200701320.

    Article  CAS  PubMed  Google Scholar 

  22. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31(2):294–301. https://doi.org/10.1016/j.molcel.2008.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8(1):67–9. https://doi.org/10.1038/nmeth.1542.

    Article  CAS  PubMed  Google Scholar 

  24. Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact. 2013;12:110. https://doi.org/10.1186/1475-2859-12-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galinski EA, Pfeiffer HP, Truper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985;149(1):135–9. https://doi.org/10.1111/j.1432-1033.1985.tb08903.x.

    Article  CAS  PubMed  Google Scholar 

  26. Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol. 2008;26(4):326–33.

    Article  PubMed  Google Scholar 

  27. Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s beta-amyloid. FEBS Lett. 2005;579(21):4775–80. https://doi.org/10.1016/j.febslet.2005.07.057.

    Article  CAS  PubMed  Google Scholar 

  28. Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med. 2009;180(1):29–35. https://doi.org/10.1164/rccm.200812-1911OC.

    Article  CAS  PubMed  Google Scholar 

  29. Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine. 2013;20(7):585–91. https://doi.org/10.1016/j.phymed.2013.01.009.

    Article  CAS  PubMed  Google Scholar 

  30. Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv. 2010;28(6):782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005.

    Article  CAS  PubMed  Google Scholar 

  31. Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998;59(1):128. https://doi.org/10.1002/(sici)1097-0290(19980705)59:1%3c128::aid-bit17%3e3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  32. Schubert T, Maskow T, Benndorf D, Harms H, Breuer U. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol. 2007;73(10):3343–7. https://doi.org/10.1128/AEM.02482-06.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez-Garcia F, Ziert C, Risse JM, Wendisch VF. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol. 2017;258:59–68. https://doi.org/10.1016/j.jbiotec.2017.04.039.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Fang Y, Zhu L, Li H, Wang Z, Li Y, Wang X. Metabolic engineering of Escherichia coli for efficient ectoine production. Syst Microbiol Biomanuf. 2021;004:001. https://doi.org/10.1007/s43393-021-00031-1.

    Article  CAS  Google Scholar 

  35. Fang Y, Wang J, Ma W, Yang J, Zhang H, Zhao L, Chen S, Zhang S, Hu X, Li Y, Wang X. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system. Metab Eng. 2020;61:33–46. https://doi.org/10.1016/j.ymben.2020.01.009.

    Article  CAS  PubMed  Google Scholar 

  36. Selas Castiñeiras T, Williams SG, Hitchcock A, Cole JA, Smith DC, Overton TW. Development of a generic β-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci Rep. 2018;8(1):6986. https://doi.org/10.1038/s41598-018-25192-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ooi AT, Stains CI, Ghosh I, Segal DJ. Sequence-enabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry. 2006;45(11):3620–5. https://doi.org/10.1021/bi0517032.

    Article  CAS  PubMed  Google Scholar 

  38. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007):809–17. https://doi.org/10.1126/science.2028256.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Stains CI, Porter JR, Ooi AT, Segal DJ, Ghosh I. DNA sequence-enabled reassembly of the green fluorescent protein. J Am Chem Soc. 2005;127(31):10782–3. https://doi.org/10.1021/ja051969w.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China (2018YFA0900300).

Author information

Authors and Affiliations

Authors

Contributions

ZL and XW conceived and designed the research. ZL, YF, HL, SZ, YL, DH and YW conducted experiments. ZL and XW analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xiaoyuan Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 249 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fang, Y., Li, H. et al. DNA scaffold assisted ectoine production in Escherichia coli. Syst Microbiol and Biomanuf 4, 188–202 (2024). https://doi.org/10.1007/s43393-023-00180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00180-5

Keywords

Navigation