Skip to main content
Log in

Producing malonate in Saccharomyces cerevisiae via the β-alanine pathway

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Malonate is a high-value chemical that can be used to produce value-added compounds. Due to the toxic by-products and low product yield for malonate production through hydrolysis of cyanoacetic acid, microbial production methods have attracted significant attention. Previously, the β-alanine pathway has been engineered in Escherichia coli for malonate production. In this study, the β-alanine pathway was constructed in Saccharomyces cerevisiae by introducing the heterologous genes of BcBAPAT and TcPAND to convert l-aspartate to malonic semialdehyde, combining with co-expression genes of AAT2 and UGA2 to improve precursor supply and malonate producing. Through delta sequence-based integration of the two heterologous genes, the engineered strain produced with 7.21 mg/L malonate was screened. Further, replaced the succinic semialdehyde dehydrogenase gene UGA2 with yneI from E. coli which was utilized to produce malonate in previous study, increased the malonate titer to 7.96 mg/L in flask culture. Following optimization, fermentation of the final engineered strain in shake flasks yielded a maximum malonate titer of 12.83 mg/L, and this was increased to 91.53 mg/L during fed-batch fermentation in a 5 L bioreactor which increased by two-fold compared with that of the engineered strain overexpressing UGA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Werpy T, Petersen G. Top value added chemicals from biomass. Results of screening for potential candidates from sugars and synthesis gas, vol. 1. Golden: National Renewable Energy Lab; 2004.

    Book  Google Scholar 

  2. Li B, Lin A, Gan F. Preparation and characterization of Cr–P coatings by electrodeposition from trivalent chromium electrolytes using malonic acid as complex. Surf Coat Technol. 2006;201:2578–86. https://doi.org/10.1016/j.surfcoat.2006.05.001.

    Article  CAS  Google Scholar 

  3. Aziah Serri N, Kamaruddin AH, Len KYT. A continuous esterification of malonic acid with citronellol using packed bed reactor: investigation of parameter and kinetics study. Food Bioprod Process. 2010;88:327–32. https://doi.org/10.1016/j.fbp.2008.12.002.

    Article  CAS  Google Scholar 

  4. Szlosek D, Currie D. Application and mechanism of malonic acid as a green alternative for protein-crosslinking. Green Sustain Chem. 2016;6:6. https://doi.org/10.4236/gsc.2016.62010.

    Article  CAS  Google Scholar 

  5. Zhang D, Dumont M-J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Poly Sci. 2017;55:1478–92. https://doi.org/10.1002/pola.28527.

    Article  CAS  Google Scholar 

  6. Klikar M, Jelínková V, Růžičková Z, Mikysek T, Pytela O, Ludwig M, et al. Malonic acid derivatives on duty as electron-withdrawing units in push–pull molecules. Eur J Org Chem. 2017;2017:2764–79. https://doi.org/10.1002/ejoc.201700070.

    Article  CAS  Google Scholar 

  7. Dietrich JA, Fortman JL, Steen EJ. Recombinant host cells for the production of malonate. 2017. US patent WO 2013/134424 A1.

  8. Gu S, Zhao Z, Yao Y, Li J, Tian C. Designing and constructing a novel artificial pathway for malonic acid production biologically. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2021.820507.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Song CW, Kim JW, Cho IJ, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Syn Bio. 2016;5:1256–63. https://doi.org/10.1021/acssynbio.6b00007.

    Article  CAS  Google Scholar 

  10. Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng. 2015;27:57–64. https://doi.org/10.1016/j.ymben.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  11. Chen F, Zhou J, Liu J, Du G, Chen J. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Acta Microbiol Sin. 2010;50:1172–9.

    CAS  Google Scholar 

  12. Zhao Y, Xiong B, Xu H, Jiang L. Expression of NYV1 encoding the negative regulator of Pmc1 is repressed by two transcriptional repressors, Nrg1 and Mig1. FEBS Lett. 2014;588:3195–201. https://doi.org/10.1016/j.febslet.2014.06.062.

    Article  CAS  PubMed  Google Scholar 

  13. Parekh RN, Shaw MR, Wittrup KD. An integrating vector for tunable, high copy, stable integration into the dispersed ty δ sites of Saccharomyces cerevisiae. Biotechnol Prog. 1996;12:16–21. https://doi.org/10.1021/bp9500627.

    Article  CAS  PubMed  Google Scholar 

  14. Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng. 2013;15:55–66. https://doi.org/10.1016/j.ymben.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  15. Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1–4. https://doi.org/10.1038/nprot.2007.17.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang P, Ding Y, Liao W, Chen Q, Zhang H, Qi P, et al. A simple, universal, efficient PCR-based gene synthesis method: sequential OE-PCR gene synthesis. Gene. 2013;524:347–54. https://doi.org/10.1016/j.gene.2013.03.126.

    Article  CAS  PubMed  Google Scholar 

  17. Köhrer K, Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398–405.

    Article  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  19. Ramos F, Ei Guezzar M, Grenson M, Wiame J-M. Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur J Biochem. 1985;149:401–4. https://doi.org/10.1111/j.1432-1033.1985.tb08939.x.

    Article  CAS  PubMed  Google Scholar 

  20. Verleur N, Elgersma Y, Van Roermund CWT, Tabak HF, Wanders RJA. Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces Cerevisiae. Eur J Biochem. 1997;247:972–80. https://doi.org/10.1111/j.1432-1033.1997.00972.x.

    Article  CAS  PubMed  Google Scholar 

  21. Nakano Y, Tokunaga H, Kitaoka S. Two omega-amino acid transaminases from Bacillus cereus. The J Biochem. 1977;81:1375–81. https://doi.org/10.1093/oxfordjournals.jbchem.a131591.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Zheng W, Ye W, Wang C, Gao Y, Cui W, et al. Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine. Appl Microbiol Biotechnol. 2019;103:9443–53. https://doi.org/10.1007/s00253-019-10139-z.

    Article  CAS  PubMed  Google Scholar 

  23. Lee FWF, Silva NAD. Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1997;48:339–45. https://doi.org/10.1007/s002530051059.

    Article  CAS  PubMed  Google Scholar 

  24. Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119–22. https://doi.org/10.1016/0378-1119(95)00037-7.

    Article  CAS  PubMed  Google Scholar 

  25. Dada O, SahaidKalil M, Yusoff WMW. Effects of inoculum and substrate concentrations in anaerobic fermentation of treated rice bran to acetone, butanol and ethanol. Bacteriol J. 2012;2:79–89. https://doi.org/10.3923/bj.2012.79.89.

    Article  Google Scholar 

  26. Ji R-Y, Ding Y, Shi T-Q, Lin L, Huang H, Gao Z, et al. Metabolic engineering of yeast for the production of 3-hydroxypropionic acid. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.02185.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Liu Y, Wang J, Zhao Y, Deng Y. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae. J Microbiol. 2020;58:1065–75. https://doi.org/10.1007/s12275-020-0261-7.

    Article  CAS  PubMed  Google Scholar 

  28. Chen N, Wang J, Zhao Y, Deng Y. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb Cell Fact. 2018;17:67. https://doi.org/10.1186/s12934-018-0914-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brewster NK, Val DL, Walker ME, Wallace JC. Regulation of pyruvate carboxylase isozyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth. Arch Biochem Biophys. 1994;311:62–71. https://doi.org/10.1006/abbi.1994.1209.

    Article  CAS  PubMed  Google Scholar 

  30. Bach B, Meudec E, Lepoutre J-P, Rossignol T, Blondin B, Dequin S, et al. New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:4231–9. https://doi.org/10.1128/AEM.00051-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vissers S, Andre B, Muyldermans F, Grenson M. Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae. Eur J Biochem. 1989;181:357–61. https://doi.org/10.1111/j.1432-1033.1989.tb14732.x.

    Article  CAS  PubMed  Google Scholar 

  32. Erasmus DJ, van der Merwe GK, van Vuuren HJJ. Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 2003;3:375–99. https://doi.org/10.1016/s1567-1356(02)00203-9.

    Article  CAS  PubMed  Google Scholar 

  33. Fuhrer T, Chen L, Sauer U, Vitkup D. Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J Bacteriol. 2007;189:8073–8. https://doi.org/10.1128/JB.01027-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci. 2007;104:2402–7. https://doi.org/10.1073/pnas.0607469104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0905502), the National Natural Science Foundation of China (21877053), Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-015), and the Open Foundation of Jiangsu Key Laboratory of Industrial Biotechnology (KLIB-KF201807).

Author information

Authors and Affiliations

Authors

Contributions

YD and YZ: designed and conceived the idea the whole experiments. SL, WF and RS: performed the experiments. SL: analysed the results and wrote the first draft of the manuscript. YD and YZ: supervised the work and revised the manuscript.

Corresponding authors

Correspondence to Yunying Zhao or Yu Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Fu, W., Su, R. et al. Producing malonate in Saccharomyces cerevisiae via the β-alanine pathway. Syst Microbiol and Biomanuf 3, 328–338 (2023). https://doi.org/10.1007/s43393-022-00113-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00113-8

Keywords

Navigation