Skip to main content
Log in

Mineral Metabolism and Polycystic Ovary Syndrome and Metabolic Risk Factors: A Mendelian Randomization Study

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Observational investigations recommend that mineral supplements were associated with a higher risk of polycystic ovary syndrome (PCOS) and its risk factors (insulin resistance, hyperandrogenism, and obesity), but the relationship with risk of PCOS, hyperandrogenism, obesity, and insulin resistance was unclear. This study was to investigate the potential causal impact of genetically predicted levels of magnesium (Mg), calcium (Ca), selenium (Se), zinc (Zn), iron (Fe), and omega-3 (ω-3) on polycystic ovary syndrome (PCOS) and its associated risk factors. A two-sample Mendelian randomization (MR) analysis was conducted. The genetic variations obtained from GWAS of individuals with European ancestry were found to be associated with the genetically predicted levels of Ca, Mg, Zn, Se, Fe, or ω-3. The data obtained from the FinnGen Consortium and MAGIC were utilized for the outcome of GWAS. The study found that there was a correlation between genetically predicted higher levels of Se and a reduced risk of insulin resistance, with a decrease of 2.2% according to random-effect IVW (OR 0.978, 95% CI 0.960–0.996, p = 0.015). The association between genetically determined mineral levels and PCOS was found to be limited, with an odds ratio (OR) ranging from 0.875 (95% CI: 0.637–1.202, p value = 0.411) for Ca. Limited scientific proof was found for the efficacy of other genetically determined mineral levels on hyperandrogenism, obesity, and insulin resistance. These findings suggested a causal relationship between genetically predicted higher levels of Se and a reduced risk of insulin resistance. Nonetheless, there is limited evidence supporting a causal association between various genetically determined mineral levels and the risk factors associated with PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data are available from the website (https://gwas.mrcieu.ac.uk/).

Code Availability

Please see the attached files.

References

  1. Lee IT, Sansone S, Irfan M, et al. Implementation of international guidelines for polycystic ovary syndrome: barriers and facilitators among gynecologists and primary care providers. F S Rep. 2022;3(2):94–101.

    PubMed  PubMed Central  Google Scholar 

  2. Guan C, Zahid S, Minhas AS, et al. Polycystic ovary syndrome: a “risk-enhancing” factor for cardiovascular disease. Fertil Steril. 2022;117(5):924–35.

    Article  CAS  PubMed  Google Scholar 

  3. Shojaeian Z, Sadeghi R, Latifnejad Roudsari R. Calcium and vitamin D supplementation effects on metabolic factors, menstrual cycles and follicular responses in women with polycystic ocvary syndrome: a systematic review and meta-analysis. Caspian J Intern Med. 2019;10(4):359–69.

    PubMed  PubMed Central  Google Scholar 

  4. Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: what’s new?[J]. Adv Clin Exp Med. 2017;26(2):359–67.

    Article  PubMed  Google Scholar 

  5. Ibáñez L, Oberfield SE, Witchel S, et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr. 2017;88(6):371–95.

    Article  PubMed  Google Scholar 

  6. Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional supplements and complementary therapies in polycystic ovary syndrome. Adv Nutr. 2022;13(4):1243–66.

    Article  CAS  PubMed  Google Scholar 

  7. Foroozanfard F, Jamilian M, Bahmani F, et al. Calcium plus vitamin D supplementation influences biomarkers of inflammation and oxidative stress in overweight and vitamin D-deficient women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Clin Endocrinol (Oxf). 2015;83(6):888–94.

    Article  CAS  PubMed  Google Scholar 

  8. Hamilton KP, Zelig R, Parker AR, Haggag A. Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome. Curr Dev Nutr. 2019;3(11):nzz108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jamilian M, Foroozanfard F, Bahmani F, et al. Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. 2016;170(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  10. Shabani A, Noshadian M, Jamilian M, et al. The effects of a novel combination of selenium and probiotic on weight loss, glycemic control and markers of cardio-metabolic risk in women with polycystic ovary syndrome. J Funct Foods. 2018;46:329–34.

    Article  CAS  Google Scholar 

  11. Martínez-García MA, Luque-Ramírez M, San-Millán JL, Escobar-Morreale HF. Body iron stores and glucose intolerance in premenopausal women: role of hyperandrogenism, insulin resistance, and genomic variants related to inflammation, oxidative stress, and iron metabolism. Diabetes Care. 2009;32(8):1525–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang K, Zeng L, Bao T, Ge J. Effectiveness of Omega-3 fatty acid for polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2018;16(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith GD, Ebrahim S. Data dredging, bias, or confounding. BMJ. 2002;325(7378):1437–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng J, Baird D, Borges MC, et al. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deshmukh H, Shah N, Papageorgiou M, et al. Genetic risk for the polycystic ovary syndrome, bone mineral density and fractures in women and men: a UK Biobank Mendelian randomisation study. Bone. 2022;155: 116285.

    Article  CAS  PubMed  Google Scholar 

  16. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45(3):908–15.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  17. O’Seaghdha CM, Wu H, Yang Q, et al. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet. 2013;9(9):e1003796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer TE, Verwoert GC, Hwang SJ, et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six Loci influencing serum magnesium levels. PLoS Genet. 2010;6(8):e1001045

  19. Evans DM, Zhu G, Dy V, et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet. 2013;22(19):3998–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benyamin B, Esko T, Ried JS, et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014;5:4926.

    Article  CAS  PubMed  Google Scholar 

  21. Sobczyk MK, Gaunt TR. The effect of circulating zinc, selenium, copper and vitamin K(1) on COVID-19 outcomes: a Mendelian randomization study. Nutrients. 2022;14(2):223.

  22. Sun Q, Gao N, Xia W. Association between omega-3/6 fatty acids and cholelithiasis: a Mendelian randomization study. Front Nutr. 2022;9:964805.

    Article  PubMed  PubMed Central  Google Scholar 

  23. The FinnGen Consortium. The R4 release of FinnGen study. Accessed January 15, 2021.https://finngen.gitbook.io/documentation/.

  24. Locke AE, Steinberg KM, Chiang CWK, et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature. 2019;572:323–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Li JW, Chen YZ, Zhang Y, et al. Gut microbiota and risk of polycystic ovary syndrome: insights from Mendelian randomization. Heliyon. 2023;9(12):e22155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology. 2014;25(3):427–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  MathSciNet  PubMed  Google Scholar 

  28. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.

  33. Kanafchian M, Mahjoub S, Esmaeilzadeh S, et al. Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance [J]. Middle East Fertil Soc J. 2018;23:241–5.

    Article  Google Scholar 

  34. Jamilian M, Razavi M, Fakhrie Kashan Z, et al. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol. 2015;82:885–91.

    Article  CAS  Google Scholar 

  35. Hajizadeh-Sharafabad F, Moludi J, Tutunchi H, Taheri E, Izadi A, Maleki V. Selenium and polycystic ovary syndrome; current knowledge and future directions: a systematic review. Horm Metab Res. 2019;51(5):279–87.

    Article  CAS  PubMed  Google Scholar 

  36. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723–7.

    Article  CAS  PubMed  Google Scholar 

  37. Stapleton SR. Selenium: an insulin-mimetic. Cell Mol Life Sci. 2000;57(13–14):1874–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gan W, Clarke RJ, Mahajan A, Kulohoma B, Kitajima H, Robertson NR, Rayner NW, Walters RG, Holmes MV, Chen Z, McCarthy MI. Bone mineral density and risk of type 2 diabetes and coronary heart disease: a Mendelian randomization study. Wellcome Open Res. 2017;22(2):68.

    Article  Google Scholar 

  39. Gan W, Neeland IJ, Kozlitina J. Mendelian randomization: using natural genetic variation to assess the causal role of modifiable risk factors in observational studies. Circulation. 2017;135:755–8.

    Article  Google Scholar 

  40. Gan W, VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology. 2014;25:427–35.

    Article  Google Scholar 

  41. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  42. Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J, Mindell JS, Kivimaki M, Brunner EJ, Whittaker JC, et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol. 2016;45:1600–16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

It was supported by Huzhou Science and Technology Plan (2022GY27).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyun Wu or Yang Ding.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Xu, L., Wu, X. et al. Mineral Metabolism and Polycystic Ovary Syndrome and Metabolic Risk Factors: A Mendelian Randomization Study. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01476-0

Keywords

Navigation