Skip to main content

Advertisement

Log in

Alteration of Plasma Indoles in Polycystic Ovary Syndrome

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in reproductive-aged women. The occurrence of PCOS was reported to be associated with the alteration of gut microbiota. Microbiota-derived indoles may possibly play a key role in glycemic control. The purpose of this work is to reveal the alteration of plasma indoles in PCOS patients and to investigate the correlation between indoles levels and glucose metabolism. Sixty-five patients with PCOS and twenty-eight age-matched women were enrolled in this work. The concentrations of plasma indoles, including indoxyl sulfate (IS), indole-3-acetic acid (IAA), indole-3-propionate (IPA), indole (IND), and 3-methylindole (3-MI), were measured by HPLC with the fluorescence detection. The plasma levels of IS, IAA, and IND were significantly elevated in patients with PCOS compared to those in the control group (p < 0.05). Furthermore, the plasma levels of IS, IAA, and IND were positively correlated with fasting glucose, fasting insulin, and the homeostatic model of insulin resistance index (HOMA-IR) (p < 0.05). Besides, the 3-MI level in the plasma was positively correlated with the fasting glucose level, whereas plasma levels of IS, IAA, IND, and 3-MI were negatively correlated with glucagon-like peptide 1 (p < 0.05). Moreover, IS and IND were considered to be risk factors for PCOS after age, BMI, T, LH, and HOMA-IR adjustment. The area under the receiver-operating characteristic curve of the combined index of five indoles was 0.867 for PCOS diagnosis. Additionally, plasma indoles altered in PCOS, which was closely associated with the glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study will be provided on request.

Code Availability

Not applicable.

References

  1. Lizneva D, Suturina L, Walker W, et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106:6–15.

    Article  PubMed  Google Scholar 

  2. Muscogiuri G, Barrea L, Caprio M, et al. Nutritional guidelines for the management of insulin resistance. Crit Rev Food Sci Nutr. 2021;2:1–14.

    Google Scholar 

  3. Joham AE, Norman RJ, Stener-Victorin E, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10:668–80.

    Article  CAS  PubMed  Google Scholar 

  4. Greenwood EA, Huddleston HG. Insulin resistance in polycystic ovary syndrome: concept versus cutoff. Fertil Steril. 2019;112:827–8.

    Article  PubMed  Google Scholar 

  5. Joham AE, Teede HJ. PCOS - a metabolic condition with health impacts on women and men. Nat Rev Endocrinol. 2022;18(4):197–8.

    Article  PubMed  Google Scholar 

  6. Siddiqui S, Mateen S, Ahmad R, et al. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022;39(11):2439–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Giampaolino P, Foreste V, Di Filippo C, et al. Microbiome and PCOS: state-of-art and future aspects. Int J Mol Sci. 2021;22(4):2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Zhou J, Gober HJ, et al. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomed Pharmacother. 2021;133:110958.

    Article  CAS  PubMed  Google Scholar 

  9. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(913–916):e917.

    Google Scholar 

  10. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174–82.

    Article  CAS  PubMed  Google Scholar 

  12. Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707–18.

    Article  CAS  PubMed  Google Scholar 

  13. Koppe L, Pillon NJ, Vella RE, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol. 2013;24(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  14. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon Receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria Sensor Receptor. Clin Rev Allergy Immunol. 2020;59:382–90.

    Article  CAS  PubMed  Google Scholar 

  16. Abildgaard A, Elfving B, Hokland M, et al. The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem. 2018;124:306–12.

    Article  CAS  PubMed  Google Scholar 

  17. Kwon Y, Jang M, Lee Y, et al. Metabolomic analysis of the improvements in insulin secretion and resistance after sleeve gastrectomy: implications of the novel biomarkers. Obes Surg. 2021;31:43–52.

    Article  PubMed  Google Scholar 

  18. Sehgal R, de Mello VD, Männistö V, et al. Indolepropionic acid, a gut bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease. Nutrients. 2022;14(21):4695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rotterdam EA. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.

    Article  Google Scholar 

  20. Calori G, Lattuada G, Piemonti L, et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona study. Diabetes Care. 2011;34:210–5.

    Article  PubMed  Google Scholar 

  21. Ożegowska K, Plewa S, Mantaj U, et al. Serum metabolomics in PCOS women with different body mass index. J Clin Med. 2021;10(13):2811.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang K, Zhou Y, Zhang X, et al. Simultaneous determination of plasma indoles by HPLC with fluorescence detection: application in polycystic ovary syndrome patients with/without depression. Liq Chromatogr R T. 2022;2:124–267.

    Google Scholar 

  23. Liu Z, Hao C, Song D, et al. Androgen receptor coregulator CTBP1-AS is associated with polycystic ovary syndrome in Chinese women: a preliminary study. Reprod Sci. 2015;22(7):829–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ozegowska K, Korman M, Szmyt A, et al. Heterogeneity of endocrinologic and metabolic parameters in reproductive age polycystic ovary syndrome (PCOS) women concerning the severity of hyperandrogenemia-a new insight on syndrome pathogenesis. Int J Environ Res Public Health. 2020;17(24):9291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pijls KE, Smolinska A, Jonkers DM, et al. A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci Rep. 2016;6:19903.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Lindon J, Nicholson J, Holmes E. The handbook of metabonomics and metabolomics. 1st ed. Elsevier Science; 2007.

  28. Guo J, Shao J, Yang Y, et al. Gut microbiota in patients with polycystic ovary syndrome: a systematic review. Reprod Sci. 2022;29(1):69–83.

    Article  PubMed  Google Scholar 

  29. France MM, Turner JR. The mucosal barrier at a glance. J Cell Sci. 2017;130:307–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Meijers B, Evenepoel P, Anders H-J. Intestinal microbiome and fitness in kidney disease. Nat Rev Nephrol. 2019;15:531–45.

    Article  PubMed  Google Scholar 

  31. Zhang D, Zhang L, Yue F, et al. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur J Endocrinol. 2015;172:29–36.

    Article  CAS  PubMed  Google Scholar 

  32. Matsumoto T, Takayanagi K, Kojima M, et al. Acute exposure to indoxyl sulfate impairs endothelium-dependent vasorelaxation in rat aorta. Int J Mol Sci. 2019;20(2):338.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Minakuchi H, Wakino S, Hosoya K, et al. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrol Dial Transplant. 2016;31:413–23.

    Article  CAS  PubMed  Google Scholar 

  34. Opdebeeck B, Maudsley S, Azmi A, et al. Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J Am Soc Nephrol. 2019;30:751–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li G, Yin P, Chu S, et al. Correlation analysis between GDM and gut microbial composition in late pregnancy. J Diabetes Res. 2021;2021:8892849.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Woting A, Pfeiffer N, Loh G, et al. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio. 2014;5:e01530-01514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen L, Yang Y, Sun S, et al. Indolepropionic acid reduces obesity-induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell-derived IL-25. FEBS J. 2022;289(19):5985–6004.

    Article  CAS  PubMed  Google Scholar 

  38. Jin M, Zhang X, Zhen Q, et al. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode. Biosens Bioelectron. 2017;98:392–7.

    Article  CAS  PubMed  Google Scholar 

  39. Trajkova M, Molan K, Zugan M, et al. Increased fecal indole concentration in women with gestational diabetes: a pilot study. Acta Diabetol. 2021;58:241–3.

    Article  CAS  PubMed  Google Scholar 

  40. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.

    Article  CAS  PubMed  Google Scholar 

  41. Rajeev SP, Wilding J. GLP-1 as a target for therapeutic intervention. Curr Opin Pharmacol. 2016;31:44–9.

    Article  CAS  PubMed  Google Scholar 

  42. Chimerel C, Emery E, Summers DK, et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9:1202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lipworth L, Adami HO, Trichopoulos D, et al. Serum steroid hormone levels, sex hormone-binding globulin, and body mass index in the etiology of postmenopausal breast cancer. Epidemiology. 1996;7:96–100.

    Article  CAS  PubMed  Google Scholar 

  44. Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J Endocrinol. 2007;192:585–94.

    Article  CAS  PubMed  Google Scholar 

  45. Malini NA, Roy GK. Evaluation of different ranges of LH:FSH ratios in polycystic ovarian syndrome (PCOS) - clinical based case control study. Gen Comp Endocrinol. 2018;260:51–7.

    Article  CAS  PubMed  Google Scholar 

  46. Taylor AE, Brian MC, Martin KA, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;7:2248–56.

    Google Scholar 

  47. Sacchi S, D’Ippolito G, Sena P, et al. The anti-Mullerian hormone (AMH) acts as a gatekeeper of ovarian steroidogenesis inhibiting the granulosa cell response to both FSH and LH. J Assist Reprod Genet. 2016;33:95–100.

    Article  PubMed  Google Scholar 

  48. Capuzzo M, La Marca A. Use of AMH in the differential diagnosis of anovulatory disorders including PCOS. Front Endocrinol (Lausanne). 2020;11:616766.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all participants for cooperation in this study. We thank the contributions of physicians and other medical personnel in the First Affiliated Hospital of Chongqing Medical University to this study.

Funding

This work was supported by the National Nature Science Foundation of China (31700725), Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0103, cstc2020jcyj-msxmX0141), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Ding.

Ethics declarations

Ethical Approval

The study was approved by the ethical committee of the First Affiliated Hospital of Chongqing Medical University, China.

Consent to Participate

Informed consents were obtained from all participants.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author and co‐first author of this article were Ke Yang and Xiaoqing Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Zhang, X., Gui, W. et al. Alteration of Plasma Indoles in Polycystic Ovary Syndrome. Reprod. Sci. 31, 764–772 (2024). https://doi.org/10.1007/s43032-023-01377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01377-8

Keywords

Navigation