Skip to main content

Advertisement

Log in

Effects of Ultraviolet B Radiation on the Function of the Testicles, Expression of Caspase-3 and NOS-2, and the Protective Role of Naringin in Mice

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In today’s evolving global environment, reproductive dysfunctions brought on by various environmental toxins are of greatest concern. Radiation is a constant threat to living things, causing both genetic and cellular changes that result in mutations and cell death. It is thought that ultraviolet B (UVB) radiation we are exposed to daily has biological effects on rats and humans that are both short and long term. Due to the damaging effects of UVB radiation on the living system, this study explores the automatic mechanism by which a certain level of radiation induces oxidative stress, which is further controlled by the antioxidant activity of naringin (NG). In our study, male Swiss albino mice were exposed to UVB irradiation, which altered mice’s body and testes weight, hormonal imbalance, biochemical parameters, and histo-morphometric parameter. In addition, we chose naringin’s UVB irradiation deterrent effect. Twenty-four healthy adult male Swiss albino mice weighing 25–35 g were chosen at random. For 15 days of exposure, they were divided into four groups at random: group I—control, group II—UVB exposure (2 h per day), group III—UVB exposure with naringin (NG) (80 mg/kg, bw), and group IV—naringin (NG) (80 mg/kg, bw). Compared to the control group, UVB irradiation causes alterations in the animal body weight, testes weight, hormones, enzymatic and non-enzymatic assays, and histological parameters. It was seen that NG retrieved the alterations in parameters caused by UVB irradiation. The UVB radiation exposure on mice caused the testicular dysfunction drastically, while the naringin recapitulates testis functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be provided on request.

References

  1. Wong EW, Cheng CY. Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol Sci. 2011;32(5):290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giwercman A, Giwercman YL. Environmental factors and testicular function. Best Pract Res Clin Endocrinol Metab. 2011;25(2):391–402.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal SA, Prabakaran. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Ind J Exp Biol. 2005;43:963–74.

    CAS  Google Scholar 

  4. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2009;16(1):3–13.

  5. Neugart S, Schreiner M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci Hortic. 2018;234:370–81.

    Article  CAS  Google Scholar 

  6. Andrady A, Aucamp P, Bais A., Ballare C, Bjorn L, Bornman JR & Zepp RG. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005.

    Google Scholar 

  7. Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.

    Article  CAS  PubMed  Google Scholar 

  8. Hales DB, Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH. Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci. 2005;1061(1):120–34.

    Article  CAS  PubMed  Google Scholar 

  9. Duru NK, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000;74(6):1200–7.

    Article  Google Scholar 

  10. Cadet J, Douki T, Gasparutto D, Ravanat JL. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res -Fundam Mol Mech Mutagen. 2003;531(1-2):5–23.

    Article  CAS  Google Scholar 

  11. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai SJ, Huang CS, Mong MC, Kam WY, Huang HY, Yin MC. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem. 2012;60(1):514–21.

    Article  CAS  PubMed  Google Scholar 

  13. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–61.

    Article  CAS  PubMed  Google Scholar 

  14. Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1):317S–25S.

    Article  CAS  PubMed  Google Scholar 

  15. Constantin RP, Constantin RP, Bracht A, Yamamoto NS, Ishii-Iwamoto EL, Constantin J. Molecular mechanisms of citrus flavanones on hepatic gluconeogenesis. Fitoterapia. 2014;92:148–62.

    Article  CAS  PubMed  Google Scholar 

  16. Ghanbari-Movahed M, Jackson G, Farzaei MH, Bishayee A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front Pharmacol. 2021;12:639840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shashank S, Gayatri R, Payal M. Retaliating properties of naringin: a mini-review. Am J Biomed Sci & Res. 2022;17(5):AJBSR.MS.ID.002381. https://doi.org/10.34297/AJBSR.2022.17.002381

  18. Akindele AJ, Adeneye AA, Salau OS, Sofidiya MO, Benebo AS. Dose and time-dependent sub-chronic toxicity study of hydroethanolic leaf extract of Flabellaria paniculata Cav. (Malpighiaceae) in rodents. Front Pharmacol. 2014;5:78.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol. 2010;48(2):626–32.

    Article  CAS  PubMed  Google Scholar 

  20. Ahangarpour A, Oroojan AA, Heidari H. Effects of exendin-4 on male reproductive parameters of d-galactose induced aging mouse model. World J Mens Health. 2014;32(3):176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sachidhanandam M, Singh SN, Salhan AK, Ray US. Evaluation of plasma hormone concentrations using enzyme-immunoassay/enzyme-linked immunosorbent assay in healthy Indian men: effect of ethnicity. Indian J Clin Biochem. 2010;25:153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Placer ZA, Cushman LL, Johnson BC. Estimation of lipid peroxidation, malondialdehyde in biochemical system. Anal Biochem. 1996;16:359–67.

    Article  Google Scholar 

  23. Bergmeyer HU. Methods of enzymatic analysis. Weinheim, Germany: Verlag Chemie 1983. 3, 3 273-286.

    Google Scholar 

  24. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87.

    Article  CAS  PubMed  Google Scholar 

  25. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205.

    Article  CAS  PubMed  Google Scholar 

  26. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94.

    Article  CAS  PubMed  Google Scholar 

  27. Carlberg IN, Mannervik BE. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250(14):5475–80.

    Article  CAS  PubMed  Google Scholar 

  28. Singh S, Trigun SK. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway. Cerebellum. 2010;9:384–97.

    Article  CAS  PubMed  Google Scholar 

  29. Stefanini M, Martino CD, Zamboni L. Fixation of ejaculated spermatozoa for electron microscopy. Nature. 1967;216:173–4.

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava R, Chaturvedi CM. Age, photoperiod and estrogen dependent variations in the shell gland and the expression of AVT in the ovary of Japanese quail. Steroids. 2012;77(6):578–88.

    Article  CAS  PubMed  Google Scholar 

  31. Niranjan MK, Srivastava R. Expression of estrogen receptor alpha in developing brain, ovary and shell gland of Gallus gallus domesticus: impact of stress and estrogen. Steroids. 2019;146:21–33.

    Article  CAS  PubMed  Google Scholar 

  32. Datta K, Suman S, Kallakury BV, Fornace Jr AJ. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. 2012.

    Book  Google Scholar 

  33. Lalani N, Cummings B, Halperin R, Rakovitch E, Brundage M, Vigneault E, Milosevic M. The practice of radiation oncology in Canada. Int J Radiat Oncol Biol Phys. 2017;97(5):876–80.

    Article  PubMed  Google Scholar 

  34. Namoju R, Chilaka NK, Beda DP, Avanapu SR. Pre-pubertal cyclophosphamide exposure-induced mutilation in spermatogenesis, steroidogenesis and testicular architecture in SD rat: protection from an alternative herbal viagra. Rev Int Androl. 2021;19(3):177–86.

    PubMed  Google Scholar 

  35. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.

    Article  PubMed  Google Scholar 

  36. Petrulea M, Muresan A, Duncea I. Oxidative stress and antioxidant status in hypo- and hyperthyroidism. Antioxidant enzyme. 2012;8:197–236.

    Google Scholar 

  37. Raji Y, Ifabunmi OS, Akinsomisoye OS, Morakinyo AO, Oloyo AK. Gonadal response to antipsychotic drugs: chlorpromazine and thioridazone reversibly suppress testicular functions in male rats. Int J Pharmacol. 2005;1(3):287–92.

    Article  CAS  Google Scholar 

  38. Simmons JE, Yang RS, Berman E. Evaluation of the nephrotoxicity of complex mixtures containing organics and metals: advantages and disadvantages of the use of real-world complex mixtures. Environ Health Perspect. 1995;103:67–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma P, Parmar J, Verma P, Goyal PK. Radiation-induced testicular injury and its amelioration by Tinospora cordifolia (an Indian medicinal plant) extract. Evidence-Based Complementary and Alternative Medicine. 2011;2011:643847.

  40. Mantovani A. Hazard identification and risk assessment of endocrine disrupting chemicals with regard to developmental effects. Toxicology. 2002;181:367–70.

    Article  PubMed  Google Scholar 

  41. Chauhan A, Agarwal M, Kushwaha S, Mutreja A. Suppression of fertility in male albino rats following the administration of 50% ethanolic extract of Aegle marmelos. Contraception. 2007;76(6):474–81.

    Article  PubMed  Google Scholar 

  42. Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101(suppl 2):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsatsoulis A, Shalet SM, Morris ID, De Kretser DM. Immunoactive inhibin as a marker of Sertoli cell function following cytotoxic damage to the human testis. Horm Res Paediatr. 1990;34(5-6):254–9.

    Article  CAS  Google Scholar 

  44. Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative stress and male infertility: evidence from a research perspective. Front Reprod Health. 2022;4:5.

    Article  Google Scholar 

  45. Akondi RB, Kumar P, Annapurna A, Pujari M. Protective effect of rutin and naringin on sperm quality in streptozotocin (STZ) induced type 1 diabetic rats. Iran J Pharm Res. 2011;10(3):585.

    CAS  Google Scholar 

  46. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod BioMed Online. 2004;8(6):616–27.

    Article  CAS  PubMed  Google Scholar 

  47. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. Biomarkers of free radical damage: applications in experimental animals and in humans. Free Radic Biol Med. 1999;26(1-2):202–26.

    Article  PubMed  Google Scholar 

  48. Bandyopadhyay U, Das D, Banerjee RK. Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci. 1999;10:658–66.

    Google Scholar 

  49. Podder B, Song HY, Kim YS. Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation. J Microbiol Biotechnol. 2014;24(5):605–13.

    Article  CAS  PubMed  Google Scholar 

  50. Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 2013;40:3681–91.

    Article  CAS  PubMed  Google Scholar 

  51. Hermenean A, Ardelean A, Stan M, Herman H, Mihali CV, Costache M, Dinischiotu A. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact. 2013;205(2):138–47.

    Article  CAS  PubMed  Google Scholar 

  52. Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxidative Med Cell Longev. 2012;2012:181295.

  53. Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation (44547). Proc Soc Exp Biol Med. 2000;225(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  54. Kaushik P, Mathur M, Rawat N, Saxena T, Mobar S, Meena PD. Study of Mentha piperita against gamma radiation in mice. Oxid Antioxid Med Sci. 2013;2(4):285–95.

    Article  Google Scholar 

  55. Kanno SI, Shouji A, Asou K, Ishikawa M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci. 2003;92(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  56. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants, a review. J Biochem Mol Toxicol. 2003;17:24–38.

    Article  CAS  PubMed  Google Scholar 

  57. Murray RK, Granner DK, Mayes PA, Rodwell VW. Harper’s illustrated biochemistry, 26th. The McGraw-Hill Companies Inc; 2003.

    Google Scholar 

  58. Hakan K, Namik D, Mustafa S, Engin U, Okan Ö. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther Onkol. 1999;175(6):285–8.

    Article  Google Scholar 

  59. Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat Res. 2000;154(4):455–60.

    Article  CAS  PubMed  Google Scholar 

  60. Jagetia GC, Rajanikant GK, Rao SK, Baliga MS. Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated γ radiation. Clin Chim Acta. 2003;332(1-2):111–21.

    Article  Google Scholar 

  61. Koc M, Taysi S, Emin Buyukokuroglu M, Bakan N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat Res. 2003;160(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  62. Bonsack ME, Felemovicius I, Baptista ML, Delaney JP. Radioprotection of the intestinal mucosa of rats by probucol. Radiat Res. 1999;151(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  63. Thangavel P, Muthu R, Vaiyapuri M. Antioxidant potential of naringin–a dietary flavonoid–in N-nitrosodiethylamine induced rat liver carcinogenesis. Biomed Prev Nutr. 2012;2(3):193–202.

    Article  Google Scholar 

  64. Cai Z, Li X, Katsumura Y. Interaction of hydrated electron with dietary flavonoids and phenolic acids: rate constants and transient spectra studied by pulse radiolysis. Free Radic Biol Med. 1999;27(7-8):822–9.

    Article  CAS  PubMed  Google Scholar 

  65. Jagetia GC, Reddy TK. The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutat Res Genet Toxicol Environ Mutagen. 2002;519(1-2):37–48.

    Article  CAS  Google Scholar 

  66. Kumar M, Samarth R, Kumar M, Selvan SR, Saharan B, Kumar A. Protective effect of Adhatoda vascia Nees against radiation-induced damage at cellular, biochemical and chromosomal levels in Swiss albino mice. Evid Based Complement Alternat Med. 2007;4(3):343–50.

    Article  PubMed  Google Scholar 

  67. Demyashkin G, Koryakin S, Moiseev A, Saburov V, Zatsepina M, Epifanova M, Stepanova Y, Shchekin V, Vadyukhin M, Shegay P, Kaprin A. Assessment of proliferation and apoptosis in testes of rats after experimental localized electron irradiation. Current Issues in Molecular Biology. 2022;44(11):5768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shahin S, Singh SP, Chaturvedi CM. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus. J Cell Physiol. 2018;233(9):7253–67.

    Article  CAS  PubMed  Google Scholar 

  69. Shokri S, Soltani A, Kazemi M, Sardari D, Mofrad FB. Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: a time course study. Cell J. 2015;17(2):322.

    PubMed  PubMed Central  Google Scholar 

  70. Lue Y, Sinha Hikim AP, Wang C, Leung A, Swerdloff RS. Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number, and determination of testes size: evidence from null mutant mice. Endocrinology. 2003;144(7):3092–100.

    Article  CAS  PubMed  Google Scholar 

  71. Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013;62(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  72. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.

    Article  CAS  PubMed  Google Scholar 

  73. Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact. 2016;243:1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the DST-FIST-sponsored Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P., India, for providing infrastructure facilities.

Funding

This research work was financially supported by UGC NON-NET FELLOWSHIP which boosted this research work efficaciously.

Author information

Authors and Affiliations

Authors

Contributions

PM designed the experiment plan. SS managed the experimental animals, performed the treatment, completed the data analysis, and wrote the manuscript. NN and ZA contributed to the editing and completion of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Payal Mahobiya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakyawal, S., Namdev, N., Ahmad, Z. et al. Effects of Ultraviolet B Radiation on the Function of the Testicles, Expression of Caspase-3 and NOS-2, and the Protective Role of Naringin in Mice. Reprod. Sci. 31, 452–468 (2024). https://doi.org/10.1007/s43032-023-01366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01366-x

Keywords

Navigation