Skip to main content
Log in

Novel Mutations of TSPY1 Gene Associate Spermatogenic Failure Among Men

  • Infertility: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Etiology of male infertility is intriguing owing to complex genetic regulation of human spermatogenesis and ethnic variations in genetic architecture of human populations. The present study characterizes the role of Y chromosome specific spermatogenic regulator testis-specific protein Y-encoded 1 (TSPY1) gene mutation in spermatogenic failure. This case-control study includes 163 cases of spermatogenic failure and 175 age-matched fertile men as controls. We found five novel base substitutions, namely, MT162695, MN879413, MN889982, MN889983, MN719943, two deletions MN734578 and MN734579, three novel insertions MN719941, MN719942 and MN719944 through Sanger’s dideoxy sequencing of TSPY1 gene reading frame. All these mutations exhibited strong association with male infertility. In silico analyses suggest prospective disruption in splice sites and alteration in different isoforms of TSPY1 transcripts and amino acid sequence in TSPY1 protein. The study provides novel evidence in favour of implication of TSPY1 gene in male fertility. The outcome sheds light to get insight into the issue of idiopathic male infertility in Bengali population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are included in this article.

Code Availability

The original version of software programs is used for statistical modelling. Additionally, some free version software were used to conduct association studies.

References

  1. Grigorova M, Punab M, Kahre T, Ivandi M, Tõnisson N, Poolamets O, et al. The number of CAG and GGN triplet repeats in the Androgen Receptor gene exert combinatorial effect on hormonal and sperm parameters in young men. Andrology. 2017;5:495–504. https://doi.org/10.1111/andr.12344.

    Article  CAS  PubMed  Google Scholar 

  2. Casella R, Maduro MR, Lipshultz LI, Lamb DJ. Significance of the polyglutamine tract polymorphism in the androgen receptor. Urology. 2001;58:651–6. https://doi.org/10.1016/s0090-4295(01)01401-7.

    Article  CAS  PubMed  Google Scholar 

  3. Andersen ML, Guindalini C, Santos-Silva R, Bittencourt LRA, Tufik S. Androgen receptor CAG repeat polymorphism is not associated with erectile dysfunction complaints, gonadal steroids, and sleep parameters: data from a population-based survey. J Androl. 2011;32:524–9. https://doi.org/10.2164/jandrol.110.012013.

    Article  PubMed  Google Scholar 

  4. Pastuszak AW, Lamb DJ. The genetics of male fertility--from basic science to clinical evaluation. J Androl. 2012;33:1075–84. https://doi.org/10.2164/jandrol.112.017103.

    Article  CAS  PubMed  Google Scholar 

  5. Tirumala Vani G, Mukesh N, Siva Prasad B, Rama Devi P, Hema Prasad M, Usha Rani P, et al. Role of glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia. 2010;42:213–7. https://doi.org/10.1111/j.1439-0272.2009.00971.x.

    Article  CAS  PubMed  Google Scholar 

  6. Olshan AF, Luben TJ, Hanley NM, Perreault SD, Chan RL, Herring AH, et al. Preliminary examination of polymorphisms of GSTM1, GSTT1, and GSTZ1 in relation to semen quality. Mutat Res. 2010;688:41–6. https://doi.org/10.1016/j.mrfmmm.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Safarinejad MR, Shafiei N, Safarinejad S. The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet. 2010;55:565–70. https://doi.org/10.1038/jhg.2010.59.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S-Y, Zhang C-J, Peng H-Y, Sun H, Lin K-Q, Huang X-Q, et al. Strong association of SLC1A1 and DPF3 gene variants with idiopathic male infertility in Han Chinese. Asian J Androl. 2017;19:486–92. https://doi.org/10.4103/1008-682X.178850.

    Article  CAS  PubMed  Google Scholar 

  9. Vodicka R, Vrtel R, Dusek L, Singh AR, Krizova K, Svacinova V, et al. TSPY gene copy number as a potential new risk factor for male infertility. Reprod BioMed Online. 2007;14:579–87. https://doi.org/10.1016/s1472-6483(10)61049-8.

    Article  CAS  PubMed  Google Scholar 

  10. Giachini C, Nuti F, Turner DJ, Laface I, Xue Y, Daguin F, et al. TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages. J Clin Endocrinol Metab. 2009;94:4016–22. https://doi.org/10.1210/jc.2009-1029.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JS, Yang-Feng TL, Muller U, Mohandas TK, de Jong PJ, Lau YF. Molecular isolation and characterization of an expressed gene from the human Y chromosome. Hum Mol Genet. 1992;1:717–26. https://doi.org/10.1093/hmg/1.9.717.

    Article  CAS  PubMed  Google Scholar 

  12. Arnemann J, Epplen JT, Cooke HJ, Sauermann U, Engel W, Schmidtke J. A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucleic Acids Res. 1987;15:8713–24. https://doi.org/10.1093/nar/15.21.8713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oram SW, Liu XX, Lee T-L, Chan W-Y, Lau Y-FC. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer. 2006;6:154. https://doi.org/10.1186/1471-2407-6-154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin YH, Li YY, Qiao H, Wang HC, Yang XA, Zhang HG, et al. TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma. Br J Cancer. 2005;93:458–63. https://doi.org/10.1038/sj.bjc.6602716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kersemaekers A-MF, Honecker F, Stoop H, Cools M, Molier M, Wolffenbuttel K, et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY. Hum Pathol. 2005;36:512–21. https://doi.org/10.1016/j.humpath.2005.02.016.

    Article  CAS  PubMed  Google Scholar 

  16. Nickkholgh B, Noordam MJ, Hovingh SE, van Pelt AMM, van der Veen F, Repping S. Y chromosome TSPY copy numbers and semen quality. Fertil Steril. 2010;94:1744–7. https://doi.org/10.1016/j.fertnstert.2009.09.051.

    Article  CAS  PubMed  Google Scholar 

  17. WHO laboratory manual for the examination and processing of human semen. 5th edn. World Health Organization; 2010.

  18. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–8. https://doi.org/10.1093/nar/gkg563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9. https://doi.org/10.1038/nmeth0410-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarz JM, Hombach D, Köhler S, Cooper DN, Schuelke M, Seelow D. RegulationSpotter: annotation and interpretation of extratranscriptic DNA variants. Nucleic Acids Res. 2019;47:W106–13. https://doi.org/10.1093/nar/gkz327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014;11:360–1. https://doi.org/10.1038/nmeth.2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7:e46688. https://doi.org/10.1371/journal.pone.0046688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9. https://doi.org/10.1093/bioinformatics/btl158.

    Article  CAS  PubMed  Google Scholar 

  24. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7. https://doi.org/10.1093/nar/gks539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11:1–9. https://doi.org/10.1038/nprot.2015.123.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81. https://doi.org/10.1038/nprot.2009.86.

    Article  CAS  PubMed  Google Scholar 

  27. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4. https://doi.org/10.1093/nar/gkg509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. https://doi.org/10.1093/nar/gkp215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piva F, Giulietti M, Nocchi L, Principato G. SpliceAid: a database of experimental RNA target motifs bound by splicing proteins in humans. Bioinformatics. 2009;25:1211–3. https://doi.org/10.1093/bioinformatics/btp124.

    Article  CAS  PubMed  Google Scholar 

  30. Krausz C, Giachini C, Forti G, et al. TSPY and male fertility. Genes (Basel). 2010;1:308–16. https://doi.org/10.3390/genes1020308.

    Article  CAS  PubMed Central  Google Scholar 

  31. Repping S, van Daalen SK, Brown LG, Korver CM, Lange J, Marszalek JD, Pyntikova T, van der Veen F, Skaletsky H, Page DC, Rozen S, et al. High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet. 2006;38:463–7. https://doi.org/10.1038/ng1754.

    Article  CAS  PubMed  Google Scholar 

  32. Mathias N, Bayes M, Tyler-Smith C, et al. Highly informative compound haplotypes for the human Y chromosome. Hum Mol Genet. 1994;3:115–23. https://doi.org/10.1093/hmg/3.1.115.

    Article  CAS  PubMed  Google Scholar 

  33. Luján S, Caroppo E, Niederberger C, Arce J-C, Sadler-Riggleman I, Beck D, et al. Sperm DNA methylation epimutation biomarkers for male infertility and FSH therapeutic responsiveness. Sci Rep. 2019;9:16786. https://doi.org/10.1038/s41598-019-52903-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schnieders F, Dörk T, Arnemann J, Vogel T, Werner M, Schmidtke J, et al. Testis-specific protein, Y-encoded (TSPY) expressionin testicular tissues. Hum Mol Genet. 1996;5:1801–7. https://doi.org/10.1093/hmg/5.11.1801.

    Article  CAS  PubMed  Google Scholar 

  35. Shen Y, Yan Y, Liu Y, Zhang S, Yang D, Zhang P, et al. A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion. Hum Mol Genet. 2013;22:1679–95. https://doi.org/10.1093/hmg/ddt004.

    Article  CAS  PubMed  Google Scholar 

  36. Svacinova V, Vodicka R, Vrtel R, Godava M, Kvapilova M, Krejcirikova E, et al. Sequence recombination in exon 1 of the TSPY gene in men with impaired fertility. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155:287–98. https://doi.org/10.5507/bp.2011.034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to all the participating volunteers who gave their consents to use tissue samples. We are thankful to all the clinician medical staffs for their active cooperation in sample collection. The departmental instrumental facilities were supported by UGC-UPE II, DST-FIST, DST-PURSE program at the University of Calcutta. Pranab Paladhi is thankful to ICMR India, for providing him fellowship.

Funding

The study was supported financially by the grants from Indian Council for Medical Research, Grant Number: 5/10/FR/10/2015-RCH.

Author information

Authors and Affiliations

Authors

Contributions

SG conceptualized the project, designed the experiments and wrote the paper. PP performed the major experiments, analyzed data, reported the novel variants and wrote the paper. PG, SD and SP helped in experiments and data analysis. BC, RC, IS and GB recruited infertile as well as control individuals, confirmed diagnosis of the infertile patients and recorded epidemiological data. All authors approved the last version.

Corresponding author

Correspondence to Sujay Ghosh.

Ethics declarations

Ethics Approval

The study was conducted following the declaration of Helsinki and rules outlined by the Indian Council of Medical Research. Ethical approval was obtained by the ethics review board constituted by the University of Calcutta.

Consent to Participate

All the families consented to participate in the study.

Consent for Publication

All the families consented for publication of data based on their donated tissue and information.

Conflict of Interest

The authors declare no competing interests.

Web Resources

https://mutalyzer.nl/

http://biomodel.uah.es/en/lab/cybertory/analysis/trans.htm

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Nucleotides

https://www.ncbi.nlm.nih.gov/orffinder/

https://web.expasy.org/translate/

http://genetics.bwh.harvard.edu/pph2/

https://www.regulationspotter.org/

http://provean.jcvi.org/index.php

https://sift.bii.a-star.edu.sg/

http://www.umd.be/HSF/

http://www.introni.it/splicing.html

https://gnomad.broadinstitute.org/variant/Y-9306347-G-A?dataset=gnomad_r2_1

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

43032_2021_839_MOESM1_ESM.pdf

Supplementary Information 1 Outcome of in silico analyses by Polyphen-2 program shows the effect of mutations MT162695 (NC_000024.10:g.9467148G>C), MN879413 (NC_000024.10:g.9467392C>T), MN889982 (NC_000024.10:g.9467443G>T) and MN719943 (NC_000024.10:g.9468104A>C) on TSPY1 transcript and protein (PDF 536 kb)

43032_2021_839_MOESM2_ESM.pdf

Supplementary Information 2 Outcome of in silico analyses by RegulationSpotter-program shows the effect of mutations MT162695 (NC_000024.10:g.9467148G>C), MN879413 (NC_000024.10:g.9467392C>T), MN889982 (NC_000024.10:g.9467443G>T), MN889983 (NC_000024.10:g.9467643G>A), MN719943 (NC_000024.10:g.9468104A>C) and rs566754601 (NC_000024.10:g.9468738G>A) on TSPY1 transcript and protein. (PDF 396 kb)

43032_2021_839_MOESM3_ESM.pdf

Supplementary Information 3 Outcome of in silico analyses by PROVEAN program shows the effect of mutations MT162695 (NC_000024.10:g.9467148G>C), MN879413 (NC_000024.10:g.9467392C>T), MN889982 (NC_000024.10:g.9467443G>T) and MN719943 (NC_000024.10:g.9468104A>C) on TSPY1 transcript and protein. (PDF 395 kb)

43032_2021_839_MOESM4_ESM.pdf

Supplementary Information 4 Outcome of in silico analyses by SIFT program shows the effect of mutations MT162695 (NC_000024.10:g.9467148G>C), MN879413 (NC_000024.10:g.9467392C>T), MN889982 (NC_000024.10:g.9467443G>T), MN719943 (NC_000024.10:g.9468104A>C), MN719944 (NC_000024.10:g.9468815_9468816insA) and MN734578 (NC_000024.10:g.9468830del) on TSPY1 transcript and protein. (PDF 575 kb)

43032_2021_839_MOESM5_ESM.pdf

Supplementary Information 5 Outcome of in silico analyses by Human-Splicing Finder program shows the effect of mutations MT162695(NC_000024.10:g.9467148G>C), MN879413(NC_000024.10:g.9467392C>T), MN889982(NC_000024.10:g.9467443G>T), MN889983(NC_000024.10:g.9467643G>A), MN719943(NC_000024.10:g.9468104A>C), MN734579(NC_000024.10:g.9468207del), MN719941(NC_000024.10:g.9468698_9468699insT), MN719942(NC_000024.10:g.9468711_9468712insG), rs566754601 (NC_000024.10:g.9468738G>A), MN719944(NC_000024.10:g.9468815_9468816insA) and MN734578(NC_000024.10:g.9468830del) on TSPY1 transcript and protein. (PDF 3316 kb)

Supplementary Information 6 Outcome of the Mutalyzer program. (PDF 910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paladhi, P., Dutta, S., Pal, S. et al. Novel Mutations of TSPY1 Gene Associate Spermatogenic Failure Among Men. Reprod. Sci. 29, 1241–1261 (2022). https://doi.org/10.1007/s43032-021-00839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00839-1

Keywords

Navigation