Skip to main content

Advertisement

Log in

The Interplay between Androgen and Gut Microbiota: Is There a Microbiota-Gut-Testis Axis

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The gut microbiota, a large ecosystem interacting with the host, has been shown to affect the health and fitness of the host-microbial superorganism. Increasing evidence suggests that the gut microbiota communicates with distal organs of the host including the brain, liver, and muscle, as well as testis, through various complex mechanisms. So far, we know that the androgen can markedly remodel the gut microbiota and has initiated an interdisciplinary field termed “microgenderome.” More recently, the gut microbiota has been found as a major regulator of androgen production and metabolism in turn and even could trespass the blood-testis barrier (BTB) to regulate spermatogenesis, which largely updates the current knowledge on male reproduction. In this review, we provided a brief overview of the context of the gender bias of diseases related to gut microbiota, the sex dimorphism of gut microbiota, and their relationships with androgen. We also summarized the known interaction between the testis and gut microbiota based on published animal studies and tentatively discussed the hypothesis of microbiota-gut-testis axis. Finally, we highlighted the opportunities and challenges underlying the ongoing research. This knowledge may extend our understanding of the role of gut microbiota in male health and microbiota-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable

References

  1. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goulet O. Potential role of the intestinal microbiota in programming health and disease. Nutr Rev. 2015;73(Suppl 1):32–40.

    Article  PubMed  Google Scholar 

  3. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.

    Article  CAS  PubMed  Google Scholar 

  4. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  5. Lederberg J. Infectious history. Science. 2000;288:287–93.

    Article  CAS  PubMed  Google Scholar 

  6. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M et al. The NIH Human Microbiome Project. Genome Res 2009;19:2317–2323

  7. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Human Microbiome Jumpstart Reference Strains Consortium, Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328:994–9.

    Article  CAS  Google Scholar 

  9. Voth E, Khanna S. The integrative human microbiome project: a mile stone in the understanding of the gut microbiome. Expert Rev Gastroenterol Hepatol. 2020;14:639–42.

    Article  CAS  PubMed  Google Scholar 

  10. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature. 2019;569:641–8.

    Article  CAS  Google Scholar 

  11. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16:276–89.

    Article  CAS  Google Scholar 

  12. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, et al. The vaginal microbiome and preterm birth. Nat Med. 2019;25:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahadi S, Leopold SR, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.

    Article  CAS  PubMed  Google Scholar 

  16. Szabo G, Bala S, Petrasek J, Gattu A. Gut-liver axis and sensing microbes. Dig Dis. 2010;28:737–44.

    Article  PubMed  Google Scholar 

  17. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis. Nutrients. 2017;9.

  18. Meijers BK, Evenepoel P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant. 2011;26:759–61.

    Article  CAS  PubMed  Google Scholar 

  19. Payne AH, Downing JR, Wong KL. Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology. 1980;106:1424–9.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A, et al. The androgen receptor in health and disease. Annu Rev Physiol. 2013;75:201–24.

    Article  CAS  PubMed  Google Scholar 

  21. Brinkmann AO. Molecular mechanisms of androgen action--a historical perspective. Methods Mol Biol. 2011;776:3–24.

    Article  CAS  PubMed  Google Scholar 

  22. Macleod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, et al. Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl. 2010;33:279–87.

    Article  CAS  PubMed  Google Scholar 

  23. Davison SL, Bell R. Androgen physiology. Semin Reprod Med. 2006;24:71–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ceruti JM, Leirós GJ, Balañá ME. Androgens and androgen receptor action in skin and hair follicles. Mol Cell Endocrinol. 2018;465:122–33.

    Article  CAS  PubMed  Google Scholar 

  25. DonCarlos LL, Sarkey S, Lorenz B, Azcoitia I, Garcia-Ovejero D, Huppenbauer C, et al. Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience. 2006;138:801–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cheung AS, Zajac JD, Grossmann M. Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer. 2014;21:R371–94.

    Article  CAS  PubMed  Google Scholar 

  27. Ratajczak MZ. Why are hematopoietic stem cells so ‘sexy’? on a search for developmental explanation. Leukemia. 2017;31:1671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mulligan T, Frick MF, Zuraw QC, Stemhagen A, McWhirter C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract. 2006;60:762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones TH. Testosterone deficiency: a risk factor for cardiovascular disease. Trends Endocrinol Metab. 2010;21:496–503.

    Article  CAS  PubMed  Google Scholar 

  30. Harada N, Hanaoka R, Hanada K, Izawa T, Inui H, Yamaji R. Hypogonadism alters cecal and fecal microbiota in male mice. Gut Microbes. 2016;7:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colldén H, Landin A, Wallenius V, Elebring E, Fändriks L, Nilsson ME, Ryberg H, Poutanen M, Sjögren K, Vandenput L, Ohlsson C (2019) The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab 317:E1182-1182E1192

  32. Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020;69:1608–19.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang P, Feng Y, Li L, Ge W, Yu S, Hao Y, et al. Improvement in sperm quality and spermatogenesis following faecal microbiota transplantation from alginate oligosaccharide dosed mice. Gut. 2021;70:222–5.

    Article  PubMed  Google Scholar 

  34. Karakas SE, Surampudi P. New biomarkers to evaluate hyperandrogenemic women and hypogonadal men. Adv Clin Chem. 2018;86:71–125.

    Article  CAS  PubMed  Google Scholar 

  35. Vemuri R, Sylvia KE, Klein SL, Forster SC, Plebanski M, Eri R, et al. The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin Immunopathol. 2019;41:265–75.

    Article  PubMed  Google Scholar 

  36. Clocchiatti A, Cora E, Zhang Y, Dotto GP. Sexual dimorphism in cancer. Nat Rev Cancer. 2016;16:330–9.

    Article  CAS  PubMed  Google Scholar 

  37. Edgren G, Liang L, Adami HO, Chang ET. Enigmatic sex disparities in cancer incidence. Eur J Epidemiol. 2012;27:187–96.

    Article  PubMed  Google Scholar 

  38. Wisnivesky JP, Halm EA. Sex differences in lung cancer survival: do tumors behave differently in elderly women. J Clin Oncol. 2007;25:1705–12.

    Article  PubMed  Google Scholar 

  39. Dekker E, Tanis PJ, Vleugels J, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  40. Gao R, Gao Z, Huang L, Qin H. Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017;36:757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu X, Li S, Xu Y, Zhang Y, Ma W, Liang C, et al. Androgen maintains intestinal homeostasis by inhibiting BMP signaling via intestinal stromal cells. Stem Cell Reports. 2020;15:912–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amos-Landgraf JM, Heijmans J, Wielenga MC, Dunkin E, Krentz KJ, Clipson L, et al. Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc Natl Acad Sci U S A. 2014;111:16514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology. 2007;133:887–96.

    Article  CAS  PubMed  Google Scholar 

  44. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. 2004;36:1117–21.

    Article  CAS  PubMed  Google Scholar 

  45. Gillessen S, Templeton A, Marra G, Kuo YF, Valtorta E, Shahinian VB. Risk of colorectal cancer in men on long-term androgen deprivation therapy for prostate cancer. J Natl Cancer Inst. 2010;102:1760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lovell RM, Ford AC. Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. Am J Gastroenterol. 2012;107:991–1000.

    Article  PubMed  Google Scholar 

  47. Toner BB, Akman D. Gender role and irritable bowel syndrome: literature review and hypothesis. Am J Gastroenterol. 2000;95:11–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kim BJ, Rhee PL, Park JH, Chang DK, Kim YH, Son HJ, et al. Male sex hormones may influence the symptoms of irritable bowel syndrome in young men. Digestion. 2008;78:88–92.

    Article  CAS  PubMed  Google Scholar 

  49. Chang L, Heitkemper MM. Gender differences in irritable bowel syndrome. Gastroenterology. 2002;123:1686–701.

    Article  PubMed  Google Scholar 

  50. Houghton LA, Jackson NA, Whorwell PJ, Morris J. Do male sex hormones protect from irritable bowel syndrome. Am J Gastroenterol. 2000;95:2296–300.

    Article  CAS  PubMed  Google Scholar 

  51. Chiang IN, Huang CY, Pu YS, Chang CH, Muo CH, Chung CJ, et al. Association between ischaemic bowel syndromes and androgen deprivation therapy in patients with prostate cancer: a retrospective cohort study. BMJ Open. 2017;7:e012950.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Klil-Drori AJ, Tascilar K, Yin H, Aprikian A, Bitton A, Azoulay L. Androgen deprivation therapy and the incidence of inflammatory bowel disease in patients with prostate cancer. Am J Epidemiol. 2016;184:15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mayer EA, Berman S, Chang L, Naliboff BD. Sex-based differences in gastrointestinal pain. Eur J Pain. 2004;8:451–63.

    Article  PubMed  Google Scholar 

  54. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia. 2001;44:3–15.

    Article  CAS  PubMed  Google Scholar 

  55. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.

    Article  CAS  PubMed  Google Scholar 

  56. Saad F. The role of testosterone in type 2 diabetes and metabolic syndrome in men. Arq Bras Endocrinol Metabol. 2009;53:901–7.

    Article  PubMed  Google Scholar 

  57. Kapoor D, Jones TH. Androgen deficiency as a predictor of metabolic syndrome in aging men: an opportunity for intervention. Drugs Aging. 2008;25:357–69.

    Article  CAS  PubMed  Google Scholar 

  58. Muller M, van den Beld AW, Bots ML, Grobbee DE, Lamberts SW, van der Schouw YT. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation. 2004;109:2074–9.

    Article  CAS  PubMed  Google Scholar 

  59. De Pergola G, Pannacciulli N, Ciccone M, Tartagni M, Rizzon P, Giorgino R. Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int J Obes Relat Metab Disord. 2003;27:803–7.

    Article  PubMed  CAS  Google Scholar 

  60. Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, et al. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Sci Rep. 2016;6:23001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz A, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369.

  63. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.

    Article  CAS  PubMed  Google Scholar 

  64. Olsen NJ, Kovacs WJ. Effects of androgens on T and B lymphocyte development. Immunol Res. 2001;23:281–8.

    Article  CAS  PubMed  Google Scholar 

  65. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.

    Article  CAS  PubMed  Google Scholar 

  66. Gubbels Bupp MR, Jorgensen TN. Androgen-induced immunosuppression. Front Immunol. 2018;9:794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sellau J, Groneberg M, Lotter H. Androgen-dependent immune modulation in parasitic infection. Semin Immunopathol. 2019;41:213–24.

    Article  CAS  PubMed  Google Scholar 

  68. Wang G, Huang S, Wang Y, Cai S, Yu H, Liu H, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;76:3917–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.

    Article  CAS  PubMed  Google Scholar 

  70. Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588:303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Flak MB, Neves JF, Blumberg RS. Immunology. Welcome to the microgenderome. Science. 2013;339:1044–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Steegenga WT, Mischke M, Lute C, Boekschoten MV, Pruis MG, Lendvai A, et al. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice. Biol Sex Differ. 2014;5:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.

    Article  CAS  PubMed  Google Scholar 

  75. Ma ZS, Li W. How and why men and women differ in their microbiomes: medical ecology and network analyses of the microgenderome. Adv Sci (Weinh). 2019;6:1902054.

    Article  CAS  Google Scholar 

  76. Sinha T, Vich Vila A, Garmaeva S, Jankipersadsing SA, Imhann F, Collij V, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes. 2019;10:358–66.

    Article  CAS  PubMed  Google Scholar 

  77. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takagi T, Naito Y, Inoue R, Kashiwagi S, Uchiyama K, Mizushima K, et al. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J Gastroenterol. 2019;54:53–63.

    Article  PubMed  Google Scholar 

  79. Elderman M, de Vos P, Faas M. Role of Microbiota in Sexually Dimorphic Immunity. Front Immunol. 2018;9:1018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    Article  CAS  PubMed  Google Scholar 

  81. Levkovich T, Poutahidis T, Smillie C, Varian BJ, Ibrahim YM, Lakritz JR, et al. Probiotic bacteria induce a ‘glow of health’. PLoS One. 2013;8:e53867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One. 2014;9:e84877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol. 2018;465:4–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002;302:369–73.

    Article  CAS  PubMed  Google Scholar 

  85. Chen YL, Wang CH, Yang FC, Ismail W, Wang PH, Shih CJ, et al. Identification of Comamonas testosteroni as an androgen degrader in sewage. Sci Rep. 2016;6:35386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Farooq S, Farooq R, Nahvi N. Comamonas testosteroni: Is It Still a Rare Human Pathogen. Case Rep Gastroenterol. 2017;11:42–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Devendran S, Méndez-García C, Ridlon JM. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J Lipid Res. 2017;58:916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Devendran S, Mythen SM, Ridlon JM. The desA and desB genes from Clostridium scindens ATCC 35704 encode steroid-17,20-desmolase. J Lipid Res. 2018;59:1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tremellen K. Gut endotoxin leading to a decline IN gonadal function (GELDING) - a novel theory for the development of late onset hypogonadism in obese men. Basic Clin Androl. 2016;26:7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tremellen K, McPhee N, Pearce K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin Androl. 2017;27:5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tremellen K, McPhee N, Pearce K, Benson S, Schedlowski M, Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol Endocrinol Metab. 2018;314:E206–206E213.

    Article  PubMed  CAS  Google Scholar 

  92. Zhou C, Rao X, Wang H, Zeng B, Yu Y, Chen J, et al. Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice. Funct Integr Genomics. 2020;20:355–65.

    Article  CAS  PubMed  Google Scholar 

  93. Seminara SB, Crowley WF Jr. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J Neuroendocrinol. 2008;20:727–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci U S A. 2018;115:E11951–11951E11960.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, et al. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol. 2018;18:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T. Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim. 1998;47:151–8.

    Article  CAS  PubMed  Google Scholar 

  97. Al-Asmakh M, Stukenborg JB, Reda A, Anuar F, Strand ML, Hedin L, et al. The gut microbiota and developmental programming of the testis in mice. PLoS One. 2014;9:e103809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhao Y, Zhang P, Ge W, Feng Y, Li L, Sun Z, et al. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics. 2020;10:3308–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang T, Sun P, Geng Q, Fan H, Gong Y, Hu Y, Shan L, Sun Y, Shen W, Zhou Y (2021) Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis. Gut :gutjnl-2020-323347

  100. Ahmed S, Maldera JA, Krunic D, Paiva-Silva GO, Pénalva C, Teleman AA, et al. Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature. 2020;584:415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kübeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Müller VM, Schüppel VL, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab. 2016;5:1162–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Turner TT, Lysiak JJ. Oxidative stress: a common factor in testicular dysfunction. J Androl. 2008;29:488–98.

    Article  CAS  PubMed  Google Scholar 

  103. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sinervo B, Miles DB, Frankino WA, Klukowski M, DeNardo DF. Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav. 2000;38:222–33.

    Article  CAS  PubMed  Google Scholar 

  105. Chang CS, Kao CY. Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci. 2019;26:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 2016;19:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma ZS, Li L, Gotelli NJ. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME J. 2019;13:1911–9.

    Article  CAS  PubMed  Google Scholar 

  108. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  CAS  Google Scholar 

  109. Palazzotto E, Weber T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol. 2018;45:109–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

XL and CD are supported by the National Natural Science Foundation of China (grant no. 81971314) and Natural Science Foundation of Guangdong province (grant no. 2018B030311039).

Author information

Authors and Affiliations

Authors

Contributions

Chunhua Deng and Hong Wei designed the structure of the review. Xiangping Li analyzed the literature and drafted the manuscript. Wei Cheng and Haitao Shang prepared the pictures and tables and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunhua Deng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cheng, W., Shang, H. et al. The Interplay between Androgen and Gut Microbiota: Is There a Microbiota-Gut-Testis Axis. Reprod. Sci. 29, 1674–1684 (2022). https://doi.org/10.1007/s43032-021-00624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00624-0

Keywords

Navigation