Skip to main content

Advertisement

Log in

Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sulforaphane, an isothiocyanate found in cruciferous vegetables such as broccoli, shows promise as an adjuvant therapy for preeclampsia. To inform future clinical trials, we set out to determine the bioavailability of sulforaphane in non-pregnant and preeclamptic women. In six healthy female volunteers, we performed a crossover trial to compare the bioavailability of sulforaphane and metabolites afforded by an activated and non-activated broccoli extract preparation. We then undertook a dose escalation study of the activated broccoli extract in 12 women with pregnancy hypertension. In non-pregnant women, an equivalent dose of activated broccoli extract gave higher levels of sulforaphane and metabolites than a non-activated extract (p < 0.0001) and greater area under the curve (AUC) (3559 nM vs. 2172 nM, p = 0.03). Compared to non-pregnant women, in women with preeclampsia, the same dose of activated extract gave lower levels of total metabolites (p < 0.000) and AUC (3559 nM vs. 1653 nM, p = 0.007). Doubling the dose of the activated extract in women with preeclampsia doubled levels of sulforaphane and metabolites (p = 0.02) and AUC (1653 nM vs. 3333 nM, p = 0.02). In women with preeclampsia, activated broccoli extract was associated with modest decreases in diastolic blood pressure (p = 0.05) and circulating levels of sFlt-1 (p = 0.0002). A myrosinase-activated sulforaphane formulation affords better sulforaphane bioavailability than a non-activated formulation. Higher doses of sulforaphane are required to achieve likely effective doses in pregnant women than in non-pregnant women. Sulforaphane may improve endothelial function and blood pressure in women with pregnancy hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available on request from the corresponding author.

References

  1. Poon LC, Nicolaides KH. First-trimester maternal factors and biomarker screening for preeclampsia. Prenat Diagn. 2014;34:618–27.

    Article  PubMed  Google Scholar 

  2. Mol BBWJ, Roberts CT, Thangaratinam S, et al. Pre-eclampsia. Lancet. 2016;387:999–1011.

    Article  PubMed  Google Scholar 

  3. Rolnik DL, Wright D, Poon LCY, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    Article  CAS  PubMed  Google Scholar 

  4. Myers JE, Hart S, Armstrong S, Mires GJ, Beynon R, Gaskell SJ, et al. Evidence for multiple circulating factors in preeclampsia. Am J Obstet Gynecol. 2007;196:266.

    Article  PubMed  Google Scholar 

  5. Dehig KE, Myers JE, Seed PT, Sparkes J, Lowe J, Hunter RM, et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet. 2019;393:1807–18.

    Article  Google Scholar 

  6. Fenton C, Hobson SR, Wallace EM, Lim R. Future therapies for pre-eclampsia: beyond treading water. Aust NZ J Obstet Gynaecol. 2014;54:3–8.

    Article  Google Scholar 

  7. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30:S32–7.

    Article  PubMed  Google Scholar 

  8. Huang QT, Wang SS, Zhang M, Huang LP, Tia JW, Yu YH, et al. Advanced oxidation protein products enhances soluble Fms-like tyrosine kinase 1 expression in trophoblasts: a possible link between oxidative stress and preeclampsia. Placenta. 2013;34:949–52.

    Article  CAS  PubMed  Google Scholar 

  9. Myatt L, Kossenjans W, Sahay R, Eis A, Brockman D. Oxidative stress causes vascular dysfunction in the placenta. J Matern Neonatal Med. 2000;9:79–82.

    Article  CAS  Google Scholar 

  10. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011;31:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim R, Acharya R, Delpachitra P, Hobson S, Sobey CG, Drummond GR, et al. Activin and NADPH-oxidase in preeclampsia: insights from in vitro and murine studies. Am J Obstet Gynecol. 2015;212:86.

    Article  PubMed  Google Scholar 

  12. Brownfoot FC, Hastie R, Hannan NJ, Cannon P, Tuohey L, Parry LJ, et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am J Obstet Gynecol. 2016;214:356.

    Article  PubMed  Google Scholar 

  13. Onda K, Tong S, Beard S, Binder N, Muto M, Senadheera SN, et al. Proton pump inhibitors decrease soluble fms-like tyrosine kinase-1 and soluble endoglin secretion, decrease hypertension, and rescue endothelial dysfunction. Hypertension. 2017;69:457–68.

    Article  CAS  PubMed  Google Scholar 

  14. Hobson S, Gurusinghe SJ, Lim R, Alers NO, Miller SL, Kingdom JC, et al. Melatonin improves endothelail functin in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res. 2018;65:e12508.

    Article  PubMed  Google Scholar 

  15. Cudmore MJ, Ramma W, Cai M, Fujisawa T, Ahmad S, Al-Ani B, et al. Resveratrol inhibits the release of soluble fms-like tyrosine kinase (sFlt-1) from human placenta. Am J Obstet Gynecol. 2012;206:253.e10–5.

    Article  CAS  Google Scholar 

  16. Lim R, Adhikari S, Gurusinghe S, Leaw B, Acharya R, Rahman R, et al. Inhibition of activin A signalling in a mouse model of pre-eclampsia. Placenta. 2015;36:926–31.

    Article  CAS  PubMed  Google Scholar 

  17. Ormesher L, Myers JE, Chmiel C, Wareing M, Greenwood SJ, Tropea T, et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide. 2018;80:37–44.

    Article  CAS  PubMed  Google Scholar 

  18. Chen B, Tuuli MG, Longtine MS, Shin JS, Lawrence R, Inder T, et al. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab. 2012;302:1142–52.

    Article  Google Scholar 

  19. Ding J, Kang Y, Fan Y, Chen Q. Efficacy of resveratrol to supplement oral nifedipine treatment in pregnancy-induced preeclampsia. Endocr Connect. 2017;6:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gurusinghe S, Cox AG, Rahman R, Chan ST, Muljadi R, Singh H, et al. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2. Placenta. 2017;60:74–85.

    Article  CAS  PubMed  Google Scholar 

  21. Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: is it the source or dose that matters? Molecules. 2019;24:E3593.

    Article  PubMed  Google Scholar 

  23. Cox AG, Gurusinghe S, Abd Rahman R, Leaw B, Chan ST, Mockler JC, et al. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens. 2019;16:1–10.

    Article  PubMed  Google Scholar 

  24. Moon DO, Kim MO, Khang SH, Choi YH, Kim GY. Sulforaphane suppresses TNF-alpha-mediated activation of NF-kappa B and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett. 2009;274:132–42.

    Article  CAS  PubMed  Google Scholar 

  25. Guo L, Yang R, Wang Z, Guo Q, Gu Z. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. J Funct Foods. 2014;8:294–304.

    Google Scholar 

  26. Zhang DD, Hannink M. Distinct cysteine Rresidues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23:8137–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang Y, Li W, Yuan Su Z, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26:1401–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Langston-Cox AG, Marshall SA, Palmer KR, Wallace EM. Prolong: a double-blind randomised placebo-controlled trial of broccoli sprout extract in women with early onset preeclampsia. A clinical trial protocol. BMJ Open. 2019;9:e027493.

    PubMed  PubMed Central  Google Scholar 

  29. Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, et al. The SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obset Gynaecol. 2015;55:e1–29.

    Article  Google Scholar 

  30. Langston-Cox A, Anderson D, Creek DJ, Palmer K, Wallace EM, Marshall SA. Measuring sulforaphane and its metabolites in human plasma: a high throughput method. Molecules. 2020;25:829.

    Article  CAS  PubMed Central  Google Scholar 

  31. Rowson S, Reddy M, Rolnik DL, Da Silva CF, Palmer KR. Stability of placental growth factor, soluble fms-like tyrosine kinase 1, and soluble fms-like tyrosine kinase 1 e15a in human serum and plasma. Placenta. 2019;86:1–3.

    Article  CAS  PubMed  Google Scholar 

  32. National Health and Medical Research Council. The National Statement on Ethical Conduct in Human Research. Canberra: NHMRC; 2007.

    Google Scholar 

  33. Langston-Cox A, Muccini A, Marshall SA, Palmer KR, Wallace EM, Ellery S. Sulforaphane improves syncitiotrophoblast mitochondrial function after in vitro hypoxic and superoxide injury. Placenta. 2020;96:44–54.

    Article  CAS  PubMed  Google Scholar 

  34. Scaffidi J, Mol BW, Keelan JA. The pregnant women as a drug orphan: a global survey of registered clinical trials of pharmacological interventions in pregnancy. Int J Obstet Gynaecol. 2017;124:132–40.

    Article  CAS  Google Scholar 

  35. Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxidative Med Cell Longev. 2015;2015:407580.

    Article  Google Scholar 

  36. Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E, et al. Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment. Crit Rev Food Sci Nutr. 2018;58:1391–405.

    Article  CAS  PubMed  Google Scholar 

  37. Soundararajan P, Kim JS. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules. 2018;23:E2983.

    Article  PubMed  Google Scholar 

  38. Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7:813–23.

    Article  CAS  Google Scholar 

  39. Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol. 2009;130:144–51.

    Article  Google Scholar 

  40. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci. 2014;111:15550–5.

    Article  CAS  PubMed  Google Scholar 

  41. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, et al. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin Psychopharmacol Neurosci. 2015;13:62–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fahey JW, Wade KL, Wehage SL, Holtzclaw WD, Liu H, Talalay P, et al. Stabilized sulforaphane for clinical use: phytochemical delivery efficiency. Mol Nutr Food Res. 2017;61.

  43. Pariente G, Leibson T, Carls A, Adams-Webber T, Ito S, Koren G. Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Med. 2016;13:e1002160.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. J Food Sci Technol. 2016;53:581–90.

    Article  CAS  PubMed  Google Scholar 

  45. Parfenova H, Liu J, Hoover DT, Fedinec AL. Vasodilator effects of sulforaphane in cerebral circulation: a critical role of endogenously produced hydrogen sulfide and arteriolar smooth muscle KATP and BK channels in the brain. J Cereb Blood Flow Metab. 2019;52:581–90.

    Google Scholar 

  46. Hastie R, Brownfoot FC, Pritchard N, Hannan NJ, Cannon P, Nguyen V, et al. EGFR (epidermal growth factor receptor) signaling and the mitochondria regulate sFlt-1 (soluble FMS-like tyrosine kinase-1) secretion. Hypertens. 2019;73:659–70.

    Article  CAS  Google Scholar 

Download references

Code Availability

Not applicable

Funding

This work is funded by a research grant to SAM and EMW from the Norman Beischer Medical Research Foundation and by an NHMRC Program grant (APP 1113902) to EMW. The funding bodies had no role in trial design or the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AGC, SM, KP and EMW designed the study protocols and undertook the clinical studies. AGC, DA and DJC performed the LC-MS. AGC wrote the first draft of the manuscript. All authors contributed to manuscript revisions, and read and approved the final manuscript.

Corresponding author

Correspondence to E. M. Wallace.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human Research Ethics Statement

Both studies were approved by the Monash Health Research Ethics Committee: RES17-0000-169A, approved 7 April 2017, and RES18-0000-514A, approved 10 September 2018.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langston-Cox, A.G., Anderson, D., Creek, D.J. et al. Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension. Reprod. Sci. 28, 1489–1497 (2021). https://doi.org/10.1007/s43032-020-00439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00439-5

Keywords

Navigation