Skip to main content
Log in

An Efficient Automated Detection of Schizophrenia Using k-NN and Bag of Words Features

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Converging shreds of evidence from several research argue that the aberrations present in a brain’s Structural Magnetic Resonance Imaging (sMRI) are the leading cause of Schizophrenia, a severe psychiatric disorder. The augmentation of the application of Machine Learning (ML) in detecting mental diseases has led to an automated and accurate diagnosis. The automated diagnosis of Schizophrenia using ML has been implemented in this paper. The objective of this study is to create a Computer Aided Diagnosis (CAD) system to classify schizophrenia and normal control. The proposed framework used Scale-Invariant Feature Transform (SIFT), a local feature descriptor, to extract distinctive features from the pre-processed sMRI images. Mini Batch k-means clustering has been applied to cluster the feature vectors (descriptors) obtained from the SIFT detector. Then, the Bag of Words (BoW) approach was used to create histograms of the clusters created after clustering. The histograms of the individual visual words have been used as the training data for the k-Nearest Neighbor (k-NN) algorithm. The k-NN classifier with BoW features demonstrated promising results using SIFT feature extraction technique and provided significantly encouraging performance for schizophrenia detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The dataset used in the study is the Center for Biomedical Research Excellence (COBRE) dataset which is publicly available. It has been acquired from The Mind Research Network for Neurodiagnostic Discovery. Online—http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

References

  1. World Health Organization. Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia. Accessed 20 Feb 2023.

  2. Arias D, Saxena S, Verguet S. Quantifying the global burden of mental disorders and their economic value. eClinicalMedicine. 2022;54(12):101675.

    Article  Google Scholar 

  3. He H, Liu Q, Li N, Guo L, Gao F, Bai L, Gao F, Lyu J. Trends in the incidence and dalys of schizophrenia at the global, regional and national levels: results from the global burden of disease study 2017. Epidemiol Psychiatric Sci. 2020;29:e91.

    Article  Google Scholar 

  4. Sher K. Suicide in schizophrenia: an educational overview. Medicina. 2019;55(07):361.

    Article  Google Scholar 

  5. Ranjan A, Singh V, Mishra R, Thakur A, Singh A. aSentence polarity detection using stepwise greedy correlation based feature selection and random forests: an fmri study. J Neurolinguist. 2021;59(08):100985.

    Article  Google Scholar 

  6. Ranjan A, Singh V. Affirmative and negative sentence detection in the brain using svm-rfe and rotation forest: an fmri study. SN Comput Sci. 2023;4:04.

    Article  Google Scholar 

  7. Symms M, Jäger HR, Schmierer K, Yousry TA. A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry. 2004;75(9):1235–44.

    Article  Google Scholar 

  8. Sarpal DK, Tarcijonas G. Neuroimaging markers of antipsychotic treatment response in schizophrenia: an overview of magnetic resonance imaging studies. Neurobiol Dis. 2019;131:104209.

    Article  Google Scholar 

  9. Kavitha G, Latha M. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in mri of the schizophrenic brain. Magn Reson Mater Phys. 2018;31:483–99.

    Article  Google Scholar 

  10. Xiao Y, Yan Z, Zhao Y, Tao B, Sun H, Li F, Yao L, Zhang W, Chandan S, Liu J, Gong Q, Sweeney JA, Lui S. Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural mri. Schizophr Res. 2019;214:11–7.

    Article  Google Scholar 

  11. Sharma M, Sharma P, Mittal R, Gupta K. Brain tumour detection using machine learning. J Electron Inform. 2021;3:12.

  12. Kadir T, Gleeson F. Lung cancer prediction using machine learning and advanced imaging techniques. Transl Lung Cancer Res. 2018;7(3):304–312.

  13. Priya A, Garg S, Tigga NP. Predicting anxiety, depression and stress in modern life using machine learning algorithms. Proc Comput Sci. 2020;167:1258–67 (International Conference on Computational Intelligence and Data Science.).

    Article  Google Scholar 

  14. Tyagi A, Singh VP, Gore MM. Improved detection of coronary artery disease using dt-rfe based feature selection and ensemble learning. In: Woungang I, Dhurandher SK, Pattanaik KK, Verma A, Verma P, editors. Advanced network technologies and intelligent computing. Cham: Springer International Publishing; 2022. p. 425–40.

    Chapter  Google Scholar 

  15. Siuly S, Guo Y, Alcin O, Li Y, Wen P, Wang H. Exploring deep residual network based features for automatic schizophrenia detection from eeg. Phys Eng Sci Medicine, 2023;46:561–574.

  16. Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang Y-D, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of schizophrenia based on magnetic resonance imaging modalities: methods, challenges, and future works. Comput Biol Med. 2022;146: 105554.

    Article  Google Scholar 

  17. Tyagi A, Singh VP, Gore MM. Towards artificial intelligence in mental health: a comprehensive survey on the detection of schizophrenia. Multimed Tools Appl. 2022;82:20343–20405.

  18. The Mind Research Network for Neurodiagnostic Discovery. “COBRE”. http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html, [Online]. Accessed 25 Sep 2022.

  19. Wang EL, Jiang H, Tang YQ, Yu X, Zhang J, Liu C, Chen ZH, Yan T. Detecting abnormal brain regions in schizophrenia using structural mri via machine learning. Comput Intell Neurosci, 2020; p. 13.

  20. Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci. 2020;10(8).

  21. Dwyer DB, Cabral C, Kambeitz-Ilankovic L, Sanfelici R, Kambeitz J, Calhoun V, Falkai P, Pantelis C, Meisenzahl E, Koutsouleris N. Brain subtyping enhances the neuroanatomical discrimination of schizophrenia. Schizophrenia Bull. 2018;44(5):1060–9 (02).

    Article  Google Scholar 

  22. Tanveer M, Jangir J, Ganaie MA, Beheshti I, Tabish M, Chhabra N. Diagnosis of schizophrenia: a comprehensive evaluation. IEEE J Biomed Health Inform, 2022;27:1.

  23. Ramkiran S, Sharma A, Rao NP. Resting-state anticorrelated networks in schizophrenia. Psychiatry Res Neuroimaging. 2019;284:1–8.

    Article  Google Scholar 

  24. Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60:91.

    Article  Google Scholar 

  25. Hart PE, Duda RO, Stork DG. Pattern classification, vol. 24. Wiley; 2001.

    MATH  Google Scholar 

  26. Dance CR, Fan L, Willamowski J, Bray C, Cruska G. Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, 2004;pages 1–22.

  27. Fix E, Hodges JL. Discriminatory analysis - nonparametric discrimination: consistency properties. Int Stat Rev. 1989;57:238.

    Article  MATH  Google Scholar 

  28. Sonka M, Hlavac V, Boyle R. Image pre-processing. Boston: Springer US; 1993. p. 56–111.

    Google Scholar 

  29. Nayar SK. Sift detector. In: Monograph FPCV-2-3, First Principles of Computer Vision, Columbia University, New York, Aug 2022.

  30. Witkin AP. Scale-space filtering. In: International Joint Conference on artificial intelligence, 1983.

  31. Koenderink J. The structure of images: 1984–2021. Biol Cybern. 2021;115:03.

    Google Scholar 

  32. Florack L, ter Haar Romeny B, Viergever M, Koenderink J. The gaussian scale-space paradigm and the multiscale local jet. Int J Comput Vis. 1996;18(61–75):04.

    Google Scholar 

  33. Lowe DG. Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999;volume 2, pages 1150–1157 vol.2.

  34. Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Nédellec C, Rouveirol C, editors. Machine learning: ECML-98. Berlin: Springer Berlin Heidelberg; 1998. p. 137–42.

    Chapter  Google Scholar 

  35. Tong S, Koller D. Support vector machine active learning with application sto text classification. In: Proceedings of the Seventeenth International Conference on machine learning, ICML ’00, page 999-1006, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

  36. Lodhi, H, Shawe-Taylor J, Cristianini N, Watkins C. Text classification using string kernels. J Mach Learn Res. 2000;2:563–569 (01).

  37. Cristianini N, Shawe-Taylor J, Lodhi H. Latent semantic kernels. J Intell Inform Syst. 2002;18(2–3):127–52.

    Article  Google Scholar 

  38. Castellani U, Rossato E, Murino V, Bellani M, Rambaldelli G, Perlini C, Tomelleri L, Tansella M, Brambilla P. Classification of schizophrenia using feature-based morphometry. J Neural Transm (Vienna, Austria: 1996). 2011;119:395–404 (09).

    Article  Google Scholar 

  39. Jinisha AC, Siva Rani TS. Brain tumor classification using svm and bag of visual word classifier. In: 2019 International Conference on recent advances in energy-efficient computing and communication (ICRAECC), 2019; p. 1–6.

  40. Prasanth L, Abhijith PM, Darsith VK, Sreekanthan DK, Anjali T. Breast cancer detection using bag of visual words. In: Milan Tuba M, Shyam Akashe S, Joshi A, editors. ICT infrastructure and computing. Singapore: Springer Nature Singapore; 2023. p. 189–97.

    Chapter  Google Scholar 

  41. Suhail Z, Denton E, Zwiggelaar R, Mahmood A. Bag of visual words based approach for the classification of benign and malignant masses in mammograms using voting-based feature encoding. 14th International Workshop on Breast Imaging (IWBI 2018). Vol. 10718. 2018;p. 2.

  42. Kadu S, Bamnote GR. Heart attack detection using bag of words with machine learning. Int J Adv Res Innov Ideas Educ. 2019;5:105–12.

    Google Scholar 

  43. Jin X, Han J. K-Means clustering. Boston: Springer US; 2020. p. 563–4.

    Google Scholar 

  44. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.

    Article  MATH  Google Scholar 

  45. Saylan C, Yılancıoğlu K. Classification of schizophrenia and bipolar disorder by using machine learning algorithms. J Neurobehav Sci. 2016;3(1):01.

    Google Scholar 

  46. Ruiz de Miras J, Ibáñez-Molina AJ, Soriano MF, Iglesias-Parro S. Schizophrenia classification using machine learning on resting state eeg signal. Biomed Signal Process Control. 2023;79:104233.

    Article  Google Scholar 

  47. Kacur J, Polec J, Csóka F. Eye tracking and knn based detection of schizophrenia. In: 2019 International Symposium ELMAR, 2019;p. 123–126.

  48. Akbari H, Ghofrani S, Zakalvand P, Tariq Sadiq M. Schizophrenia recognition based on the phase space dynamic of eeg signals and graphical features. Biomed Signal Process Control. 2021;69:102917.

    Article  Google Scholar 

  49. Uddin S, Haque I, Lu H, Ali Moni M, Gide E. Comparative performance analysis of k-nearest neighbour (knn) algorithm and its different variants for disease prediction. Sci Rep. 2022;04:12.

    Google Scholar 

  50. Stone M. Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc Ser B (Methodological). 1974;36(2):111–47.

    MathSciNet  MATH  Google Scholar 

  51. Jiao Y, Pufeng D. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol. 2016;4:320–30.

    Article  Google Scholar 

  52. Hajian-Tilaki K. Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4(2):627–35.

    Google Scholar 

  53. Swets JA. Indices of discrimination or diagnostic accuracy: their rocs and implied models. Psychol Bull. 1986;99(1):100–17.

    Article  Google Scholar 

  54. Tyagi A, Singh VP, Gore MM. Machine learning approaches for the detection of schizophrenia using structural mri. In: Woungang I, Dhurandher SK, Pattanaik KK, Verma A, Verma P, editors. Advanced network technologies and intelligent computing. Cham: Springer Nature Switzerland; 2023. p. 423–39.

    Chapter  Google Scholar 

  55. Sculley D. Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, page 1177-1178, New York, NY, USA, 2010. Association for Computing Machinery.

  56. Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 1996;29(1):51–9.

    Article  Google Scholar 

  57. Song K-C, YAN Y-H, CHEN W-H, Zhang X. Research and perspective on local binary pattern. Acta Autom Sin. 2013;39(06):730–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Tyagi.

Ethics declarations

Conflict of Interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Research Trends in Computational Intelligence” guest edited by Anshul Verma, Pradeepika Verma, Vivek Kumar Singh and S. Karthikeyan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Singh, V.P. & Gore, M.M. An Efficient Automated Detection of Schizophrenia Using k-NN and Bag of Words Features. SN COMPUT. SCI. 4, 518 (2023). https://doi.org/10.1007/s42979-023-01947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01947-2

Keywords

Navigation