Skip to main content

Machine Learning Approaches for the Detection of Schizophrenia Using Structural MRI

  • Conference paper
  • First Online:
Advanced Network Technologies and Intelligent Computing (ANTIC 2022)

Abstract

The reproducibility of Computer Aided Diagnosis (CAD) in detecting schizophrenia using neuroimaging modalities can provide early diagnosis of the disease. Schizophrenia is a psychiatric disorder that can lead to structural abnormalities in the brain, causing delusions and hallucinations. Neuroimaging modality such as a structural Magnetic Resonance Imaging (sMRI) technique can capture these structural abnormalities in the brain. Utilizing Machine Learning (ML) as a potential diagnostic tool in detecting classification biomarkers can aid clinical measures and cater to recognizing the factors underlying schizophrenia. This paper proposes an ML based model for the detection of schizophrenia on the structural MRI dataset of 146 subjects. We sought to classify schizophrenia and healthy control using five ML classifiers: Support Vector Machine, Logistic Regression, Decision Tree, k-Nearest Neighbor, and Random Forest. The raw structural MRI scans have been pre-processed using techniques such as image selection, image conversion, gray scaling of MRI images, and image flattening. Further, we have tested the performance of the model using hold-out cross-validation and stratified 10-fold cross-validation techniques. The results showed that the SVM achieved high accuracy when the dataset was validated using a stratified 10-fold cross-validation technique. On the other hand, k-Nearest Neighbor performed better when the hold-out validation method was used to evaluate the classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World health organization on schizophrenia. Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia. Accessed 04 Oct 2022

  2. Laursen, T.M., Nordentoft, M., Mortensen, P.B.: Excess early mortality in schizophrenia. Annu. Rev. Clin. Psychol. 10(1), 425–448 (2014)

    Article  Google Scholar 

  3. Abinaya Sundari, R., Sujatha, C.M.: Identification of schizophrenia using LSTM recurrent neural network. In: 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), pp. 1–6 (2021)

    Google Scholar 

  4. Spitzer, R.L., Kroenke, K., Williams, J.B.W.: Diagnostic and statistical manual of mental disorders, 3rd edn. American Psychiatric Association (1980)

    Google Scholar 

  5. National Institute of Biomedical Imaging and Bioengineering (NIH). Magnetic resonance imaging (MRI). https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri. Accessed 04 Oct 2022

  6. Borgwardt, S., Andreou, C.: Structural and functional imaging markers for susceptibility to psychosis. Mol. Psychiatry 25, 2773–2785 (2020)

    Article  Google Scholar 

  7. Tyagi, A., Singh, V.P., Gore, M.M.: Towards artificial intelligence in mental health: a comprehensive survey on the detection of schizophrenia. Multimedia Tools Appl. (2022)

    Google Scholar 

  8. Chang, C.-W., Ho, C.-C., Chen, J.-H.: ADHD classification by a texture analysis of anatomical brain MRI data. Front. Syst. Neurosci. 6, 66 (2012)

    Article  Google Scholar 

  9. Sarraf, S., Tofighi, G.: Classification of Alzheimer’s disease using FMRI data and deep learning convolutional neural networks, March 2016

    Google Scholar 

  10. Xiao, Z., et al.: A deep learning-based segmentation method for brain tumor in MR images, pp. 1–6 (2016)

    Google Scholar 

  11. Zhu, Y., et al.: Application of a machine learning algorithm for structural brain images in chronic schizophrenia to earlier clinical stages of psychosis and autism spectrum disorder: a multiprotocol imaging dataset study. Schizophrenia Bull. 48(3), 563–574 (2022)

    Article  MathSciNet  Google Scholar 

  12. Schwarz, E., et al.: Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl. Psychiatry 9, 01 (2019)

    Article  Google Scholar 

  13. Koshiyama, D., et al.: Neuroimaging studies within cognitive genetics collaborative research organization aiming to replicate and extend works of enigma. Hum. Brain Mapp. 43(1), 182–193 (2022)

    Article  Google Scholar 

  14. Tanveer, M., Jangir, J., Ganaie, M.A., Beheshti, I., Tabish, M., Chhabra, N.: Diagnosis of schizophrenia: a comprehensive evaluation. IEEE J. Biomed. Health Inform. 1 (2022)

    Google Scholar 

  15. Chen, Z.H., et al.: Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning. Comput. Intell. Neurosci. 13 (2020)

    Google Scholar 

  16. Guo, Y., Qiu, J., Lu, W.: Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci. 10(8) (2020)

    Google Scholar 

  17. Winterburn, J.L., et al.: Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophrenia Res. 214, 3–10 (2019)

    Article  Google Scholar 

  18. Talpalaru, A., Bhagwat, N., Devenyi, G.A., Lepage, M., Chakravarty, M.M.: Identifying schizophrenia subgroups using clustering and supervised learning. Schizophrenia Res. 214, 51–59 (2019)

    Article  Google Scholar 

  19. Skjerbæk, M.W., Foldager, J., Ambrosen, K.S., et al.: A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-Naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl. Psychiatry 10(276) (2020)

    Google Scholar 

  20. IBM: Computer vision. https://www.ibm.com/in-en/topics/computer-vision. Accessed 27 Sept 2022

  21. Stockman, G., Shapiro, L.G.: Computer Vision, 1st edn. Prentice Hall PTR, Hoboken (2001)

    Google Scholar 

  22. Liu, L., Wang, Y., Chi, W.: Image recognition technology based on machine learning. IEEE Access, 1 (2020)

    Google Scholar 

  23. Abbas Malik, M.G., Bashir, Z., Iqbal, N., Imtiaz, Md.A.: Color image encryption algorithm based on hyper-chaos and DNA computing. IEEE Access 8, 88093–88107 (2020)

    Google Scholar 

  24. Impact of image flattening. https://www.geeksforgeeks.org/impact-of-image-flattening/. Accessed 28 Sept 2022

  25. Zhang, Y.: Support vector machine classification algorithm and its application. In: Liu, C., Wang, L., Yang, A. (eds.) Information Computing and Applications, pp. 179–186 (2012)

    Google Scholar 

  26. Gandhi, R.: Support vector machine - introduction to machine learning algorithms. In: Towards Data Science, 7 June 2018. Accessed 30 Sept 2022

    Google Scholar 

  27. Tyagi, A., Singh, V.P., Gore, M.M.: Improved detection of coronary artery disease using DT-RFE based feature selection and ensemble learning. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds.) ANTIC 2021. CCIS, vol. 1534, pp. 425–440. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96040-7_34

  28. Vetter, S.P., Regression, T.R.: The apple does not fall far from the tree. Anesthesia Analgesia 127(1), 277–283 (2018)

    Article  Google Scholar 

  29. Vetter, T.R., Schober, P.: Linear regression in medical research. Anesthesia Analgesia 132, 108–109 (2021)

    Article  Google Scholar 

  30. Vetter, T.R., Schober, P.: Logistic regression in medical research. Anesthesia Analgesia 132, 365–366 (2021)

    Article  Google Scholar 

  31. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning. SSS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

  32. Song, Y.-Y., Lu, Y.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27, 130–135 (2015)

    Google Scholar 

  33. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pp. 986–996 (2003)

    Google Scholar 

  34. Larose, D.T.: Discovering Knowledge in Data an Introduction to Data Mining, 2nd edn. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  35. Breiman, L.: Classification and Regression Trees, 1st edn. Taylor and Francis Group, Boca Raton (1984)

    MATH  Google Scholar 

  36. Sarica, A., Cerasa, A., Quattrone, A.: Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 9 (2017)

    Google Scholar 

  37. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation, pp. 532–538 (2009)

    Google Scholar 

  38. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI 1995, pp. 1137–1143 (1995)

    Google Scholar 

  39. DataVedas: HOLDOUT CROSS-VALIDATION, 14 June 2018. Accessed 01 Oct 2022

    Google Scholar 

  40. Lyashenko, A.J.V.: Cross-Validation in Machine Learning: How to Do It Right. Neptune, 21 July 2022. Accessed 01 Oct 2022

    Google Scholar 

  41. The Mind Research Network for Neurodiagnostic Discovery. COBRE. https://www.mrn.org/common/cobre-phase-3. Accessed 25 Sept 2022

  42. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5, 01–11 (2015)

    Google Scholar 

  43. Kulkarni, A., Chong, D., Batarseh, F.A.: 5 - foundations of data imbalance and solutions for a data democracy. In: Batarseh, F.A., Yang, R. (eds.) Data Democracy, pp. 83–106 (2020)

    Google Scholar 

  44. Wenxin, X.: Heart disease prediction model based on model ensemble. In: International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 195–199 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tyagi, A., Singh, V.P., Gore, M.M. (2023). Machine Learning Approaches for the Detection of Schizophrenia Using Structural MRI. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds) Advanced Network Technologies and Intelligent Computing. ANTIC 2022. Communications in Computer and Information Science, vol 1798. Springer, Cham. https://doi.org/10.1007/978-3-031-28183-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28183-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28182-2

  • Online ISBN: 978-3-031-28183-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics