Skip to main content

Advertisement

Log in

Humic acid regulates gene expression and activity of antioxidant enzymes to inhibit the salt-induced oxidative stress in finger millet

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Salt stress is a major abiotic stress that exerts detrimental effects on plant growth, development and yield worldwide. Humic acid (HA) is a naturally occurring component of soil and a major element of biostimulant (BS). It has the potential to alleviate different abiotic stresses in plants effectively. However, the putative physiological mechanism underlying HA-alleviated salt stress in finger millet is unknown. The possible role of HA in improving finger millet salt stress resistance was investigated through a physiological, biochemical and molecular analysis. The results showed that HA improved growth, leaf relative water content (LRWC), and photosynthetic pigment in finger millet under salt stress. Meanwhile, HA mitigated salt-induced oxidative stress by decreasing lipid peroxidation and generating reactive oxygen species through an enhanced antioxidant system. Particularly, HA increased the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) via transcriptional regulation of EcSOD, EcCAT1, EcAPX1, and EcGR. Our results suggested that HA treatment might protect finger millet seedlings from salt stress while reducing oxidative stress by enhancing the ROS scavenging pathway gene expression. This is the first report on the use of HA to mitigate salt stress damage in finger millet by upregulating the expression of antioxidant enzyme genes such as EcSOD, EcCAT1, EcAPX, and EcGR. This study will help us understand the mechanism of HA’s role in finger millet salt tolerance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbas G, Rehman S, Siddiqui MH et al (2022) Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants 11:263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AAH, Mostofa MG, Rahman M et al (2019) Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul 38:966–979

    CAS  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA et al (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    CAS  PubMed  Google Scholar 

  • Ajeesh Krishna TP, Maharajan T, Ignacimuthu S, Antony Ceasar S (2021) Genomic-assisted breeding in finger millet (Eleusine Coracana (L.) Gaertn.) for abiotic stress tolerance. Genomic Des Abiotic Stress Resist Cereal Crop 346:291–317

    Google Scholar 

  • Akladious SA, Mohamed HI (2018) Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic (amsterdam) 236:244–250

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    CAS  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G et al (2020) Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron J 112:871–884

    CAS  Google Scholar 

  • Antony Ceasar S, Maharajan T, Ajeesh Krishna TP et al (2018) Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Front Plant Sci 9:1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam M, Sultana B, Anwar F, Munir H (2016) Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment. Turkish J Agric for 40:136–145

    CAS  Google Scholar 

  • Avashthi H, Pathak RK, Pandey N et al (2018) Transcriptome-wide identification of genes involved in Ascorbate-Glutathione cycle (Halliwell–Asada pathway) and related pathway for elucidating its role in antioxidative potential in finger millet (Eleusine coracana (L.)). 3 Biotech 8:1–18

    Google Scholar 

  • Avashthi H, Pathak RK, Gaur VS et al (2020) Comparative analysis of ROS scavenging gene families in finger millet, rice, sorghum, and foxtail millet revealed potential targets for antioxidant activity and drought tolerance improvement. Netw Model Anal Heal Inform Bioinforma 9:1–23

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1:1–11

    Google Scholar 

  • Canellas LP, da Silva SF, Olk DC, Olivares FL (2015a) Foliar application of plant growth-promoting bacteria and humic acid increase maize yields. J Food Agric Environ 13:131–138

    Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO et al (2015b) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic (amsterdam) 196:15–27

    CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB et al (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha J-Y, Kang S-H, Ali I et al (2020) Humic acid enhances heat stress tolerance via transcriptional activation of heat-shock proteins in Arabidopsis. Sci Rep 10:1–12

    Google Scholar 

  • Cha J-Y, Kang S-H, Ji MG et al (2021) Transcriptome changes reveal the molecular mechanisms of humic acid-induced salt stress tolerance in Arabidopsis. Molecules 26:782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shiyab S, Han FX et al (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121

    CAS  PubMed  Google Scholar 

  • Chin DC, Senthil Kumar R, Suen CS, Chien CY, Hwang MJ, Hsu CH et al (2019) Plant cytosolic ascorbate peroxidase with dual catalytic activity modulates abiotic stress tolerances. iScience 16:31–49. https://doi.org/10.1016/j.isci.2019.05.014

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Çimrin KM, Türkmen Ö, Turan M, Tuncer B (2010) Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr J Biotechnol 9:5845–5851

    Google Scholar 

  • Cimrin KM, Yilmaz I (2005) Humic acid applications to lettuce do not improve yield but do improve phosphorus availability. Acta Agric Scand Sect B Soil Plant Sci 55:58–63

    CAS  Google Scholar 

  • Cordeiro FC, Santa-Catarina C, Silveira V, de Souza SR (2011) Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Biosci Biotechnol Biochem 75:70–74

    CAS  PubMed  Google Scholar 

  • Dinler BS, Gunduzer E, Tekinay T (2016) Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biol Crac Ser Bot 58:29–41

    CAS  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165:134–143

    CAS  PubMed  Google Scholar 

  • Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T (2021) Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci 11:618835

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    CAS  PubMed  Google Scholar 

  • Gupta SM, Arora S, Mirza N et al (2017) Finger millet: A “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.00643

    Article  CAS  Google Scholar 

  • Hatami E, Shokouhian AA, Ghanbari AR, Naseri LA (2018a) Alleviating salt stress in almond rootstocks using of humic acid. Sci Hortic (amsterdam) 237:296–302

    CAS  Google Scholar 

  • Hatami E, Shokouhian AA, Ghanbari AR, Naseri LA (2018b) Scientia horticulturae alleviating salt stress in almond rootstocks using of humic acid. Sci Hortic (amsterdam) 237:296–302. https://doi.org/10.1016/j.scienta.2018.03.034

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S et al (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS ONE 9:e99110

    PubMed  PubMed Central  Google Scholar 

  • Hohmann S, Bill RM, Kayingo G, Prior BA (2000) Microbial MIP channels. Trends Microbiol 8:33–38

    CAS  PubMed  Google Scholar 

  • Jayasudha BG, Sushma AM, Hanjagi PS, Sashidhar VR (2014) An efficient in-vitro agrobacterium-mediated transformation protocol for raising salinity tolerant transgenic plants in finger millet [Eleusine coracana (L.) Gaertn.]. Plant Arch 14:823–829

    Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta (BBA)-Biomembr 1758:1134–1141

    CAS  Google Scholar 

  • Kausar F, Shahbaz M, Ashraf M (2013) Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turk J Bot 37:1155–1165

    CAS  Google Scholar 

  • Kaya C, Akram NA, Ashraf M, Sonmez O (2018) Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Res Commun 46:67–78

    CAS  Google Scholar 

  • Khaleda L, Park HJ, Yun D-J et al (2017) Humic acid confers high-affinity K+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol Cells 40:966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khorasaninejad S, Alizadeh Ahmadabadi A, Hemmati K (2018) The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Sci Hortic 239:314–323

  • Kumar V, Khare T (2016) Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl−) and additive stress effects of NaCl. Acta Physiol Plant 38:1–9

    Google Scholar 

  • Kumar A, Metwal M, Kaur S et al (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front Plant Sci 7:934

    PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr Protoc Food Anal Chem 1:F4–F2

    Google Scholar 

  • Mahalakshmi S, Christopher GSB, Reddy TP et al (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359

    CAS  PubMed  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    CAS  PubMed  Google Scholar 

  • Maharajan T, Antony Ceasar S, Ajeesh Krishna TP, Ignacimuthu S (2021) Finger millet [Eleusine coracana (L.) Gaertn.]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 5:684447. https://doi.org/10.3389/fsufs.2021.684447

    Article  Google Scholar 

  • Maharajan T, Ceasar SA, Ajeesh Krishna TP (2022a) Finger millet (Eleusine coracana (L.) Gaertn.): nutritional importance and nutrient transporters. CRC Crit Rev Plant Sci 41:1–31

    CAS  Google Scholar 

  • Maharajan T, Ajeesh Krishna TP, Ignacimuthu S, Ceasar SA (2022b) Finger millet genome analysis and nutrient transport. The finger millet genome. Springer, Singapore, pp 181–199

    Google Scholar 

  • Marty L, Bausewein D, Müller C, Bangash S, Moseler A, Schwarzländer M et al (2019) Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. New Phytol 224:1569–1584. https://doi.org/10.1111/nph.16086

  • Mazhar AA, Shedeed SI, Abdel-Aziz NG, Mahgoub MH (2012) Growth, flowering and chemical constituents of Chrysanthemum indicum L. plant in response to different levels of humic acid and salinity. J Appl Sci Res 8:3697–3706

  • Mbinda W, Mukami A (2021) A review of recent advances and future directions in the management of salinity stress in finger millet. Front Plant Sci 12:734798

    PubMed  PubMed Central  Google Scholar 

  • Moriwaki T, Yamamoto Y, Aida T, Funahashi T, Shishido T, Asada M, Prodhan SH, Komamine A, Motohashi T (2008) Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnol Rep 2:41–46

  • Mostofa MG, Fujita M, Tran L-SP (2015) Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 77:265–277

    CAS  Google Scholar 

  • Mukami A, Ng’etich A, Syombua E et al (2020) Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol Mol Biol Plants 26:1569–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Paksoy M, Türkmen Ö, Dursun A (2010) Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. Afr J Biotechnol 9:5343–5346

    CAS  Google Scholar 

  • Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM et al (2020) Plant catalases as NO and H2S targets. Redox Biol 34:101525. https://doi.org/10.1016/j.redox.2020.101525

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581. https://doi.org/10.3389/fpls.2017.00581

  • Pandian S, Rakkammal K, Rency AS et al (2020a) Abiotic stress and applications of omics approaches to develop stress tolerance in agronomic crops. Agronomic crops. Springer, Singapore, pp 557–578

    Google Scholar 

  • Pandian S, Rakkammal K, Rathinapriya P et al (2020b) Physiological and biochemical changes in sorghum under combined heavy metal stress: an adaptive defence against oxidative stress. Biocatal Agric Biotechnol 29:101830

    Google Scholar 

  • Pandian S, Rakkammal K, Rency AS, Muthuramalingam P (2020c) Agronomic crops. Springer, Singapore

    Google Scholar 

  • Paoletti F, Mocali A (1990) [18] Determination of superoxide dismutase activity by purely chemical system based on NAD (P) H oOxidation. Methods Enzymol 186:209–220

    CAS  PubMed  Google Scholar 

  • Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807:989–998. https://doi.org/10.1016/j.bbabio.2010.11.002

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

  • Rahman H, Jagadeeshselvam N, Valarmathi R et al (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85:485–503. https://doi.org/10.1007/s11103-014-0199-4

    Article  CAS  PubMed  Google Scholar 

  • Rakkammal K, Maharajan T, Ceasar SA, Ramesh M (2022a) Biostimulants and their role in improving plant growth under drought and salinity. Cereal Res Commun 51:1–14

    Google Scholar 

  • Rakkammal K, Priya A, Pandian S et al (2022b) Conventional and omics approaches for understanding the abiotic stress response in cereal crops—an updated overview. Plants 11:2852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakkammal K, Maharajan T, Shriram RN et al (2023) Physiological, biochemical and molecular responses of finger millet (Eleusine coracana) genotypes exposed to short-term drought stress induced by PEG-6000. S Afr J Bot 155:45–59. https://doi.org/10.1016/j.sajb.2023.01.053

    Article  CAS  Google Scholar 

  • Rathinapriya P, Pandian S, Rakkammal K et al (2020) The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol Mol Biol Plants 26:1815–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose MT, Patti AF, Little KR et al (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron 124:37–89

    CAS  Google Scholar 

  • Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga EJ, de Magalhães Júnior AM, Maia MA, da Silva Pinto L (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plants 23:865–875

  • Saidimoradi D, Ghaderi N, Javadi T (2019) Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Sci Hortic (amsterdam) 256:108594

    CAS  Google Scholar 

  • Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311

    CAS  PubMed  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS et al (2016) Effect of salinity stress on finger millet (Eleusine coracana (L.) Gaertn.): histochemical and morphological analysis of coleoptile and coleorhizae. Flora-Morphol Distrib Funct Ecol Plants 222:111–120

    Google Scholar 

  • Shahzad B, Rehman A, Tanveer M et al (2021) Salt stress in brassica: effects, tolerance mechanisms, and management. J Plant Growth Regul 41:1–15

    Google Scholar 

  • Shukry WM, Abu-Ria ME, Abo-Hamed SA, Anis GB, Ibraheem F (2023) The efficiency of humic acid for improving salinity tolerance in salt sensitive rice (Oryza sativa): growth responses and physiological mechanisms. Gesunde Pflanz 1–5

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P et al (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integr Plant Biol 60:591–607. https://doi.org/10.1111/jipb.12649

  • Sudan J, Negi B, Arora S (2015) Oxidative stress induced expression of monodehydroascorbate reductase gene in Eleusine coracana. Physiol Mol Biol Plants 21:551–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumugat MR, Donahue JL, Cortes DF, Stromberg VK, Grene R, Shulaev V et al (2010) Seed development and germination in an Arabidopsis thaliana line antisense to glutathione reductase 2. J New Seeds 11:104–126. https://doi.org/10.1080/15228861003776175

  • Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    CAS  Google Scholar 

  • Thilakarathna MS, Raizada MN (2015) A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy 5:262–290

    Google Scholar 

  • ur Rehman H, Alharby HF, Alzahrani Y, Rady MM (2018) Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil. Plant Physiol Biochem 126:97–105

    CAS  Google Scholar 

  • Wu Z, Wang J, Yan D et al (2020) Exogenous spermidine improves salt tolerance of pecan-grafted seedlings via activating antioxidant system and inhibiting the enhancement of Na+/K+ ratio. Acta Physiol Plant 42:1–13

    CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

  • Xing Y, Chen WH, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66:5971–5981. https://doi.org/10.1093/jxb/erv305

  • Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J et al (2013) Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25:4451–4468. https://doi.org/10.1105/tpc.113.11702

Download references

Acknowledgements

The author K. Rakkammal thanks the RUSA 2.0 scheme in the form of Project Fellow [Grant No. F. 24-51/2014-U, Policy (TN Multi-Gen), Department of Education, Government of India]. The authors would like to thank the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources (ICAR-NBPGR) for providing seeds to this experiment. The authors also thankfully acknowledge DST-FIST (Grant No. SR/FST/LSI-639/2015(C)), UGC-SAP (Grant No.F.5-1/2018/DRSII (SAP-II)) and DST-PURSE (Grant No. SR/PURSE Phase 2/38 (G)) for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

KR and MR—Conceived and designed the experiments. KR—Performed the experiments. KR, SP, TMR and MR—analyzed the data. KR, SP, TMR and MR—wrote the manuscript. MR—Contributed reagents and materials. MR, SIS and SAC assisted, edited and updated the manuscript.

Corresponding author

Correspondence to Manikandan Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Olesya Shoeva.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakkammal, K., Pandian, S., Maharajan, T. et al. Humic acid regulates gene expression and activity of antioxidant enzymes to inhibit the salt-induced oxidative stress in finger millet. CEREAL RESEARCH COMMUNICATIONS 52, 397–411 (2024). https://doi.org/10.1007/s42976-023-00429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-023-00429-8

Keywords

Navigation