Skip to main content
Log in

Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One- and Two-Dimensions

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed. The temporal derivative is in the Caputo-Hadamard sense for both cases. The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian. The schemes are proved to be unconditionally stable and convergent. The numerical results are in line with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 29, 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arshad, S., Huang, J.F., Khaliq, A.Q.M., Tang, Y.F.: Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. J. Comput. Phys. 350, 1–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, M., Karniadakis, G.E., Li, C.P.: Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant. Chaos 32(7), 071101 (2022)

    Article  MathSciNet  Google Scholar 

  4. Cao, J.X., Li, C.P.: Finite difference scheme for the time-space fractional diffusion equations. Cent. Eur. J. Phys. 11(10), 1440–1456 (2013)

    Google Scholar 

  5. Denisov, S.I., Kantz, H.: Continuous-time random walk theory of super-slow diffusion. Europhys. Lett. 92(3), 30001 (2010)

    Article  Google Scholar 

  6. Ding, H.F., Li, C.P., Chen, Y.Q.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, 19–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (V). Numer. Methods Partial Differ. Equ. 33, 1754–1794 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, H.F., Li, C.P.: High-order algorithms for Riesz derivative and their applications (IV). Fract. Calc. Appl. Anal. 22, 1537–1560 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. E, W.N., Ma, C., Wu, L.: The Barron space and the flow-induced function spaces for neural network models. Constr. Approx. 55, 369–406 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear Sci. Numer. Simul. 106, 106096 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 102, 333–338 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gohar, M., Li, C.P., Li, Z.Q.: Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterr. J. Math. 17(6), 194 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, Z.P., Zhang, Z.Q., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)

    MATH  Google Scholar 

  16. Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Book  Google Scholar 

  17. Li, C.P., Li, Z.Q.: Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 31, 31 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C.P., Li, Z.Q., Wang, Z.: Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 85, 41 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis. Appl. Numer. Math. 140, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F.W., Zhuang, P.H., Anh, V., Turner, I.: A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47, 203–235 (2005)

    Article  MathSciNet  Google Scholar 

  21. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ou, C.X., Cen, D.K., Vong, S., Wang, Z.B.: Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Appl. Numer. Math. 177, 34–57 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284(1/2/3/4), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  25. Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y.Y., Hao, Z.P., Du, R.: A linear finite difference scheme for the two-dimensional nonlinear Schrödinger equation with fractional Laplacian. J. Sci. Comput. 90, 24 (2022)

    Article  MATH  Google Scholar 

  28. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Book  Google Scholar 

  29. Xie, C.P., Fang, S.M.: Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions. Math. Methods Appl. Sci. 43, 3473–3487 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, Q.Q., Liu, F.W., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Changpin Li for his valuable suggestions and pointing out several typos in an earlier version of this paper. This research was partially supported by the National Natural Science Foundation of China under Grant Nos. 12271339 and 12201391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Cai.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interests/competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cai, M. Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One- and Two-Dimensions. Commun. Appl. Math. Comput. 5, 1674–1696 (2023). https://doi.org/10.1007/s42967-022-00244-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00244-8

Keywords

Mathematics Subject Classification

Navigation