Skip to main content
Log in

Finite Element Convergence for State-Based Peridynamic Fracture Models

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We establish the a priori convergence rate for finite element approximations of a class of nonlocal nonlinear fracture models. We consider state-based peridynamic models where the force at a material point is due to both the strain between two points and the change in volume inside the domain of the nonlocal interaction. The pairwise interactions between points are mediated by a bond potential of multi-well type while multi-point interactions are associated with the volume change mediated by a hydrostatic strain potential. The hydrostatic potential can either be a quadratic function, delivering a linear force–strain relation, or a multi-well type that can be associated with the material degradation and cavitation. We first show the well-posedness of the peridynamic formulation and that peridynamic evolutions exist in the Sobolev space \(H^2\). We show that the finite element approximations converge to the \(H^2\) solutions uniformly as measured in the mean square norm. For linear continuous finite elements, the convergence rate is shown to be \(C_t \Delta t + C_s h^2/\epsilon ^2\), where \(\epsilon \) is the size of the horizon, h is the mesh size, and \(\Delta t\) is the size of the time step. The constants \(C_t\) and \(C_s\) are independent of \(\Delta t\) and h and may depend on \(\epsilon \) through the norm of the exact solution. We demonstrate the stability of the semi-discrete approximation. The stability of the fully discrete approximation is shown for the linearized peridynamic force. We present numerical simulations with the dynamic crack propagation that support the theoretical convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171(1), 65–78 (2011)

    Article  Google Scholar 

  2. Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)

    Article  Google Scholar 

  4. Bobaru, F., Foster, J.T., Geubelle, P.H., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. CRC, Boca Raton (2016)

    MATH  Google Scholar 

  5. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  6. Brezis, H.: Analyse Fonctionnelle, Théorie et Application. Dunod, Paris (1983)

    MATH  Google Scholar 

  7. Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9), 1237–1250 (2011)

    Article  MathSciNet  Google Scholar 

  8. Demengel, F.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext, 1st edn. Springer, London (2012)

    Book  Google Scholar 

  9. Du, Q.: An invitation to nonlocal modeling, analysis and computation. In: Proc. Int. Cong. of Math 2018, Rio de Janeiro, vol. 3, pp. 3523–3552 (2018a)

  10. Du, Q.: Nonlocal Modeling, Analysis and Computation. NSF-CBMS Monograph. SIAM, Philadelphia (2018b)

    Google Scholar 

  11. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis of the volume-constrained peridynamic navier equation of linear elasticity. J. Elast. 113(2), 193–217 (2013a)

    Article  MathSciNet  Google Scholar 

  12. Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82(284), 1889–1922 (2013b)

    Article  MathSciNet  Google Scholar 

  13. Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013c)

    Article  MathSciNet  Google Scholar 

  14. Emmrich, E., Lehoucq, R.B., Puhst, D.: Peridynamics: a nonlocal continuum theory. Meshfree Methods for Partial Differential Equations VI, pp. 45–65. Springer, Berlin (2013)

    Chapter  Google Scholar 

  15. Foster, J.T., Silling, S.A., Chen, W.: An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9(6), 675–688 (2011)

    Article  Google Scholar 

  16. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nuclear Eng. Des. 237(12), 1250–1258 (2007)

    Article  Google Scholar 

  17. Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)

    Article  MathSciNet  Google Scholar 

  18. Guan, Q., Gunzburger, M.: Stability and accuracy of time-stepping schemes and dispersion relations for a nonlocal wave equation. Numer. Methods Part. Differ. Equ. 31(2), 500–516 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1/2), 229–244 (2010)

    Article  Google Scholar 

  20. Jha, P. K., Lipton, R.: Finite element approximation of nonlinear nonlocal models (2017). arXiv preprint arXiv:1710.07661

  21. Jha, P.K., Lipton, R.: Numerical analysis of nonlocal fracture models in Hölder space. SIAM J. Numer. Anal. 56, 906–941 (2018a)

    Article  MathSciNet  Google Scholar 

  22. Jha, P.K., Lipton, R.: Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics. Int. J. Numer. Methods Eng. 114(13), 1389–1410 (2018b)

    Article  MathSciNet  Google Scholar 

  23. Jha, P. K., Lipton, R.: Small horizon limit of state based peridynamic models. In preparation (2019)

  24. Karaa, S.: Stability and convergence of fully discrete finite element schemes for the acoustic wave equation. J. Appl. Math. Comput. 40(1/2), 659–682 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lipton, R.: Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    Article  MathSciNet  Google Scholar 

  27. Lipton, R., Silling, S., Lehoucq, R.: Complex fracture nucleation and evolution with nonlocal elastodynamics (2016). arXiv preprint arXiv:1602.00247

  28. Lipton, R., Said, E., Jha, P.: Free damage propagation with memory. J. Elast. 133(2), 129–153 (2018a)

    Article  MathSciNet  Google Scholar 

  29. Lipton, R., Said, E., Jha, P.K.: Dynamic brittle fracture from nonlocal double-well potentials: a state-based model. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1–27 (2018b)

  30. Littlewood, D. J.: Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In: Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) (2010)

  31. Macek, R.W., Silling, S.A.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    Article  MathSciNet  Google Scholar 

  32. Mengesha, T., Du, Q.: On the variational limit of a class of nonlocal functionals related to peridynamics. Nonlinearity 28(11), 3999 (2015)

    Article  MathSciNet  Google Scholar 

  33. Ren, B., Wu, C., Askari, E.: A 3d discontinuous galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis. Int. J. Impact Eng. 99, 14–25 (2017)

    Article  Google Scholar 

  34. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  35. Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech. 40(2), 395–409 (2005)

    Article  Google Scholar 

  36. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93(1), 13–37 (2008)

    Article  MathSciNet  Google Scholar 

  37. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  38. Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1/2), 219–227 (2010)

    Article  Google Scholar 

  39. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)

    Article  MathSciNet  Google Scholar 

  40. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53(3), 705–728 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lipton.

Ethics declarations

Funding

This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/Grant number W911NF1610456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P.K., Lipton, R. Finite Element Convergence for State-Based Peridynamic Fracture Models. Commun. Appl. Math. Comput. 2, 93–128 (2020). https://doi.org/10.1007/s42967-019-00039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00039-4

Keywords

Mathematics Subject Classification

Navigation