Skip to main content
Log in

Free Damage Propagation with Memory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We introduce a simple model for free damage propagation based on non-local potentials. The model is developed using a state based peridynamic formulation. The resulting evolution is shown to be well posed. At each instant of the evolution we identify the damage set. On this set the local strain has exceeded critical values either for tensile or hydrostatic strain and damage has occurred. For this model the damage set is nondecreasing with time and associated with damage variables defined at each point in the body. We show that energy balance holds for this evolution. For differentiable displacements away from the damage set we show that the nonlocal model converges to the linear elastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171, 65–78 (2011)

    Article  Google Scholar 

  2. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)

    Article  Google Scholar 

  3. Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. Chapman and Hall/CRC, London (2016)

    MATH  Google Scholar 

  5. Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. (2017). https://doi.org/10.1007/s10659-017-9661-2

    Article  MATH  Google Scholar 

  6. Emmrich, E., Phust, D.: A short note on modeling damage in peridynamics. J. Elast. 123, 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  7. Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

    Article  MathSciNet  Google Scholar 

  8. Foster, J.T., Silling, S.A., Chen, W.: An energy based failure criterion for use with peridynamic states. Int. J. Multiscale Comput. Eng. 9, 675–688 (2011)

    Article  Google Scholar 

  9. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  10. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  Google Scholar 

  11. Jha, P.K., Lipton, R.: Numerical analysis of peridynamic models in Hölder space. arXiv:1701.02818 (2017)

  12. Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lipton, R.: Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lipton, R., Silling, S., Lehoucq, R.: Complex fracture nucleation and evolution with nonlocal elastodynamics. arXiv:1602.00247 (2016)

  15. Mengesha, T., Du, Q.: Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elast. 116, 27–51 (2014)

    Article  MathSciNet  Google Scholar 

  16. Oterkus, E., Guven, I., Madenci, E.: Fatigue failure model with peridynamic theory. In: IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, June 2010, 1–6 (2010)

    Google Scholar 

  17. Pham, K., Marigo, J.J.: From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25, 147–171 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  20. Silling, S.A., Askari, E.: Peridynamic model for fatigue cracking. Sandia Report, SAND2014–18590 (2014)

  21. Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech. 40, 395–409 (2005)

    Article  ADS  Google Scholar 

  22. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  23. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)

    Article  MathSciNet  Google Scholar 

  24. Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  Google Scholar 

  25. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2013)

    MATH  Google Scholar 

  27. Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Crack patterns in ceramic plates after quenching. J. Am. Ceram. Soc. 94, 2804 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lipton.

Additional information

This material is based upon work supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF1610456.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipton, R., Said, E. & Jha, P. Free Damage Propagation with Memory. J Elast 133, 129–153 (2018). https://doi.org/10.1007/s10659-018-9672-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9672-7

Keywords

Mathematics Subject Classification

Navigation