Skip to main content
Log in

Design and synthesis of polyoxovanadate-based framework for efficient dye degradation

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

A new polyoxovanadate-based framework material [Cu(en)2]4V18O42(H2O)·6H2O (1) was designed and synthesized by hydrothermal reaction of NaVO3, Cu(NO3)2·6H2O and 1, 2-diaminoethane (en) via carefully adjusting the pH value of the reaction system. The structure of the title compound has been determined by single-crystal X-ray diffraction analysis, thermogravimetric analysis, infrared spectra and elemental analysis. Detail structural analysis demonstrate the three-dimensional (3D) framework structure of compound 1, which was composed of the [V18O42(H2O)]8− ({V18O42(H2O)}) anions linked by the Cu2+ cations. Compound 1 represents the first 3D framework based on {V18O42(H2O)} polyoxoanions and copper complexes. Solar-driven degradation of residual organic pollutants in industrial wastewater is still a major problem for human beings. Photocatalytic experiments reveal that compound 1 possesses of excellent photocatalytic activity for the degradation of methylene blue and rhodamine B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data generated during and/or analyzed during the current study are available from the corresponding author on the reasonable request.

References

  1. Qin J, Yuan S, Zhang L, Li B, Du D, Huang N, Guan W, Drake H, Pang J, Lan Y, Alsalme A, Zhou H. Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation. J Am Chem Soc. 2019;141(5):2054. https://doi.org/10.1021/jacs.8b11042.

    Article  CAS  PubMed  Google Scholar 

  2. Guo S, Kong L, Wang P, Yao S, Lu T, Zhang Z. Switching excited state distribution of metal-organic framework for dramatically boosting photocatalysis. Angew Chem Int Ed. 2022;61(6):e202206193. https://doi.org/10.1002/anie.202206193.

    Article  CAS  Google Scholar 

  3. He T, Huang Z, Yuan S, Lv X, Kong X, Zou X, Zhou H, Li J. Kinetically controlled reticular assembly of a Lewis base resistant mesoporous Ni(II)-pyrazolate metal-organic framework. J Am Chem Soc. 2020;142(31):13491. https://doi.org/10.1021/jacs.0c05074.

    Article  CAS  PubMed  Google Scholar 

  4. Zhuo T, Song Y, Zhuang G, Chang L, Yao S, Zhang W, Wang Y, Wang P, Lin W, Lu T, Zhang Z. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J Am Chem Soc. 2021;143(16):6114. https://doi.org/10.1021/jacs.0c13048.

    Article  CAS  PubMed  Google Scholar 

  5. Dhaka S, Kumar R, Deep A, Kurade M, Ji S, Jeon B. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev. 2019;380:330. https://doi.org/10.1016/j.ccr.2018.10.003.

    Article  CAS  Google Scholar 

  6. Kabtamu D, Wu Y, Li F. Hierarchically porous metal–organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. J Hazard Mater. 2020;397:122765. https://doi.org/10.1016/j.jhazmat.2020.122765.

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Yang G. Recent advances in polyoxometalate-catalyzed reactions. Chem Rev. 2015;115:4893. https://doi.org/10.1021/cr500390v.

    Article  CAS  PubMed  Google Scholar 

  8. Sun H, Yin H, Shi W, Yang L, Guo X, Lin H, Zhang J, Lu T, Zhang Z. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 2022;15:3026. https://doi.org/10.1007/s12274-021-3937-3.

    Article  CAS  Google Scholar 

  9. Zhang N, Hong L, Geng A, Yan J, Yao S, Zhang Z. Extended structural materials constructed from sulfate-centered Preyssler-type polyoxometalate with excellent electrocatalytic property. Chin Chem Lett. 2018;29(9):1409. https://doi.org/10.1016/j.cclet.2017.12.003.

    Article  CAS  Google Scholar 

  10. Zhong X, Lu Y, Luo F, Liu Y, Li X, Liu S. A Nanocrystalline POM@MOFs catalyst for the degradation of phenol: effective cooperative catalysis by metal nodes and POM guests. Chem Eur J. 2018;24:3045. https://doi.org/10.1002/chem.201705677.

    Article  CAS  PubMed  Google Scholar 

  11. Yan A, Yao S, Li Y, Zhang Z, Lu Y, Chen W, Wang E. Incorporating polyoxometalates into a porous mof greatly improves its selective adsorption of cationic dyes. Chem Eur J. 2014;20:6927. https://doi.org/10.1002/chem.201400175.

    Article  CAS  PubMed  Google Scholar 

  12. Yao M, Liu Y, Li X, Yang G, Zheng S. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem Commun. 2022;58:5737. https://doi.org/10.1039/D2CC01051H.

    Article  CAS  Google Scholar 

  13. Sun X, Lan Q, Geng J, Yu M, Li Y, Li X, Chen L. Polyoxometalate as electron acceptor in dye/TiO2 films to accelerate room-temperature NO2 gas sensing. Sens Actuators B Chem. 2023;374:132795. https://doi.org/10.1016/j.snb.2022.132795.

    Article  CAS  Google Scholar 

  14. Hu Q, Meng X, Dong Y, Han Q, Wang Y, Ding Y. A stable iron-containing polyoxometalate coupled with semiconductor for efficient photocatalytic water oxidation under acidic condition. Chem Commun. 2019;55:11778. https://doi.org/10.1039/C9CC05726A.

    Article  CAS  Google Scholar 

  15. Liu J, Wang J, Han Q, Ping S, Liu L, Chen L, Zhao J, Streb C, Song Y. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew Chem Int Ed. 2021;60(20):11153. https://doi.org/10.1002/anie.202017318.

    Article  CAS  Google Scholar 

  16. Ma P, Hu F, Wang J, Niu J. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications. Coord Chem Rev. 2019;378:281. https://doi.org/10.1016/j.ccr.2018.02.010.

    Article  CAS  Google Scholar 

  17. Chen Y, An H, Chang S, Li Y, Zhu Q, Luo H, Huang Y. A POM-based porous supramolecular framework for efficient sulfide-sulfoxide transformations with a low molar O/S ratio. Inorg Chem Front. 2022;9:3282. https://doi.org/10.1039/D2QI00525E.

    Article  CAS  Google Scholar 

  18. Chang Z, Chen Y, Zhang Y, Wang X. Polyoxometalate-based metal-organic complexes and their derivatives as electrocatalysts for energy conversion in aqueous systems. CrystEngComm. 2022;24:5675. https://doi.org/10.1039/D2CE00815G.

    Article  CAS  Google Scholar 

  19. Song Y, Peng Y, Yao S, Zhang P, Wang Y, Gu J, Lu T, Zhang Z. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin Chem Lett. 2022;33(2):1047. https://doi.org/10.1016/j.cclet.2021.08.045.

    Article  CAS  Google Scholar 

  20. Lai R, Feng H, Sun Y, Li X, Zheng S. A lanthanide-tellurium heterometal encapsulated sandwich-type heteropolyoxoniobate with a 3D pcu-type hydrogen-bonded network. Dalton Trans. 2022;51:10571. https://doi.org/10.1039/D2DT01472F.

    Article  CAS  PubMed  Google Scholar 

  21. Lan Q, Zhang Z, Qin C, Wang X, Li Y, Tan H, Wang E. Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem Eur J. 2016;22:15513. https://doi.org/10.1002/chem.201602127.

    Article  CAS  PubMed  Google Scholar 

  22. Lan Q, Jin S, Yang B, Zhao Q, Si C, Xie H, Zhang Z. Metal-oxo cluster catalysts for photocatalytic water splitting and carbon dioxide reduction. Trans Tianjin Univ. 2022;28:214. https://doi.org/10.1007/s12209-022-00324-z.

    Article  CAS  Google Scholar 

  23. Fu S, Yao S, Guo S, Guo G, Yuan W, Lu T, Zhang Z. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF. J Am Chem Soc. 2021;143(49):20792. https://doi.org/10.1021/jacs.1c08908.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhuang G, Zhang J, Luo F, Cheng X, Sun F, Fu S, Lu T, Zhang Z. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO2 photoreduction. Angew Chem Int Ed. 2022. https://doi.org/10.1002/anie.202216592.

    Article  Google Scholar 

  25. Lan Q, Zhang J, Zhang Z, Lu Y, Wang E. Two three-dimensional porous frameworks built from metal-organic coordination polymer sheets pillared by polyoxometalate clusters. Dalton Trans. 2013;42:16602. https://doi.org/10.1039/C3DT51722E.

    Article  CAS  PubMed  Google Scholar 

  26. Fu H, Qin C, Lu Y, Zhang Z, Li Y, Su Z, Li W, Wang E. An ionothermal synthetic approach to porous polyoxometalate-based metal-organic frameworks. Angew Chem Int Ed. 2012;51(32):7985. https://doi.org/10.1002/anie.201202994.

    Article  CAS  Google Scholar 

  27. Lan Q, Zhang Z, Li Y, Wang E. Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity. RSC Adv. 2015;5:44198. https://doi.org/10.1039/C5RA08262E.

    Article  CAS  Google Scholar 

  28. Shen J, Zhang Y, Zhang Z, Li Y, Gao Y, Wang E. Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chem Commun. 2014;50:6017. https://doi.org/10.1039/C3CC49245A.

    Article  CAS  Google Scholar 

  29. Zhang Z, Zhang T, Wang C, Lin Z, Long L, Lin W. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. J Am Chem Soc. 2015;137(9):3197. https://doi.org/10.1021/jacs.5b00075.

    Article  CAS  PubMed  Google Scholar 

  30. Han Q, Qi B, Ren W, He C, Niu J, Duan C. Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat Commun. 2015;6:10007. https://doi.org/10.1038/ncomms10007.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Li R, Li X, Liu J, Guan W, Dong L, Li S, Lan Y. Molecular oxidation-reduction junctions for artificial photosynthetic overall reaction. PNAS. 2022;119(40):e2210550119. https://doi.org/10.1073/pnas.2210550119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu B, Li S, Pan J, Zhang L, Xin J, Chen Y, Tan X. pH-Controlled assembly of five new organophosphorus Strandberg-type cluster-based coordination polymers for enhanced electrochemical capacitor performance. Inorg Chem. 2020;59(3):1702. https://doi.org/10.1021/acs.inorgchem.9b02858.

    Article  CAS  PubMed  Google Scholar 

  33. Sun W, Li S, Ma H, Pang H, Zhang L, Zhang Z. A new 3D framework based on reduced Wells-Dawson arsenotungstates as eight-connected linkages. RSC Adv. 2014;4:24755. https://doi.org/10.1039/C4RA02239D.

    Article  CAS  Google Scholar 

  34. Zhou J, Liu X, Hu F, Chen R, Zou H, Fu W, Liang G, Chen Y. A novel 3-D chiral polyoxovanadate architecture based on breaking high symmetry of spherical [V15O36Cl]8− cluster. CrystEngComm. 2013;15:4593. https://doi.org/10.1039/C3CE40280K.

    Article  CAS  Google Scholar 

  35. Zhou J, Liu X, Chen R, Hu F, Zou H, Wei M. A 3-D chiral organic-inorganic hybrid zinc vanadate assembled from helical units. Dalton Trans. 2013;42:5603. https://doi.org/10.1039/C2DT32670A.

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Zhang L, Lu B, Yan E, Wang T, Li L, Wang J, Yua Y, Mu Q. A new polyoxovanadate-based metal-organic framework: synthesis, structure and photo-/electro-catalytic properties. New J Chem. 2018;42:7247. https://doi.org/10.1039/C7NJ05032A.

    Article  CAS  Google Scholar 

  37. Wang K, Xu Q, Ma P, Zhang C, Wang J, Niu J. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V4O12]4− and [V10O28]6− anions to the anionic [V6O17]n4n coordination polymer. CrystEngComm. 2018;20:6273. https://doi.org/10.1039/C8CE01237G.

    Article  CAS  Google Scholar 

  38. Wang X, Gong C, Zhang J, Hou L, Luan J, Liu G. Substituent position-induced diverse architectures of polyoxovanadate-based hybrid materials constructed from a linear trinuclear transition metal complex and a hexanuclear [V6O18]6− cluster. CrystEngComm. 2014;16:7745. https://doi.org/10.1039/C4CE00988F.

    Article  CAS  Google Scholar 

  39. Thomas J, Agarwal M, Ramanan A, Chernova N, Whittingham M. Copper pyrazole directed crystallization of decavanadates: synthesis and characterization of {Cu(pz)}4[{Cu(pz)3}2V10O28] and (Hpz)2[{Cu(pz)4}2V10O28]·2H2O. CrystEngComm. 2009;11:625. https://doi.org/10.1039/B815840A.

    Article  CAS  Google Scholar 

  40. Maruyama T, Kikukawa Y, Sakiyama H, Katayama M, Inada Y, Hayashi Y. A highly-flexible cyclic-decavanadate ligand for interconversion of dinuclear- and trinuclear-cobalt(ii) and manganese(ii) cores. RSC Adv. 2017;7:37666. https://doi.org/10.1039/C7RA05941H.

    Article  CAS  Google Scholar 

  41. Inoue Y, Kikukawa Y, Kuwajima S, Hayashi Y. A chloride capturing system via proton-induced structure transformation between opened- and closed-forms of dodecavanadates. Dalton Trans. 2016;45:7563. https://doi.org/10.1039/C6DT00963H.

    Article  CAS  PubMed  Google Scholar 

  42. Mulkapuri S, Kurapati S, Das S. Carbonate encapsulation from dissolved atmospheric CO2 into a polyoxovanadate capsule. Dalton Trans. 2019;48:8773. https://doi.org/10.1039/C9DT01103J.

    Article  CAS  PubMed  Google Scholar 

  43. Kato N, Hayashi Y. Discrete spherical hexadecavanadates incorporating a bromide with oxidative bromination activity. Dalton Trans. 2013;42:11804. https://doi.org/10.1039/C3DT50521A.

    Article  CAS  PubMed  Google Scholar 

  44. Mulkapuri S, Kurapati S, Mukhopadhyay S, Das S. A fully reduced VIV18O42 host and VO43−, Cl as guest anions: synthesis, characterization and proton conductivity. New J Chem. 2019;43:17670. https://doi.org/10.1039/C9NJ01918A.

    Article  CAS  Google Scholar 

  45. Chen D, Liu C, Chen S, Shen W, Luo X, Guo L. Controlled synthesis of recyclable, porous FMO/C@TiO2 core-shell nanofibers with high adsorption and photocatalysis properties for the efficient treatment of dye wastewater. ChemPlusChem. 2016;81(3):282. https://doi.org/10.1002/cplu.201500534.

    Article  CAS  PubMed  Google Scholar 

  46. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015;79:128. https://doi.org/10.1016/j.watres.2015.04.038.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Science Research Project of Colleges and Universities in Henan Province (Grant No. 23A150006), 2023 Henan Province Key Research and Development and Promotion Special (Grant Nos. 232102230029 and 2211111520600), National Discipline Innovation and Intelligence Introduction Base of Higher Education (Grant No. D23015), the Innovation and Entrepreneurship Training Program for College Students in Henan Province (Grant No. 202210481006) and Special Project of Nanyang Normal University (Grant Nos. 2019ZX009 and 2023QN011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4439 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Q., Jin, SJ., Wang, Z. et al. Design and synthesis of polyoxovanadate-based framework for efficient dye degradation. Tungsten 6, 447–453 (2024). https://doi.org/10.1007/s42864-023-00233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00233-1

Keywords

Navigation