Skip to main content
Log in

Anomalous Viscosity, Aggregation, and Non-Ergodic Phase of Laponite® RD in a Water–Methanol Binary Solvent

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Study of the behavior of landfill lining materials (clays) in organic solvents is important because, in waste management, lining prevents groundwater contamination by the adsorption of various pollutants such as chemicals and organic solvents. Although scaling behavior and the self-association property of clays in water-alcohol binary solvents have been studied by many researchers, the anomalous behavior of Laponite XLG in binary solvents requires investigation as suggested by previous studies. In the present study, Laponite® RD, which is structurally similar to Laponite XLG, was used to gain further insight into the reasons for the anomalous viscosity, aggregation, and non-ergodic behavior of clay in a water–methanol binary solvent. Dynamic light scattering (DLS) revealed the emergence of the non-ergodic phase of 3% w/v Laponite® RD in the water–methanol binary solvent, which increased in the presence of a large methanol content as well as with aging time in the binary solvent. Viscosity measurements further indicated that aggregation was responsible for the non-ergodic behavior, and small-angle X-ray scattering (SAXS) revealed that a large methanol content enhanced the aggregation. Moreover, SAXS data also revealed that the surface charge was responsible for anomalous viscosity fluctuations in the binary solvent due to interparticle repulsion within aggregates. Rheological studies showed that the large methanol content in the binary solvent led to frequency-independent behavior of the storage modulus of Laponite® RD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  • Abou, B., Bonn, D., & Meunier, J. (2001). Aging dynamics in a colloidal glass. Physical Review E, 64, 021510.

    Article  Google Scholar 

  • Ahlfeld, T., Cidonio, G., Kilian, D., Duin, S., Akkineni, A. R., Dawson, J. I., Yang, S., Lode, A., Oreffo, R. O. C., & Gelinsky, M. (2017). Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 9, 034103.

    Article  Google Scholar 

  • Alther, G. R. (1983). The methylene blue test for bentonite liner quality control. Geotechnical Testing Journal, 6(3), 128–132.

    Article  Google Scholar 

  • Alther, G. R. (1987). The qualifications of bentonite as a soil sealant. Engineering Geology, 23, 177–191.

    Article  Google Scholar 

  • Anderson, D. C. (1982). Does landfill leachate make clay liners more permeable? Civil Engineering, 52(9), 66–69.

    Google Scholar 

  • Annan, E., Agyei-Tuffour, B., Bensah, Y. D., Konadu, D. S., Yaya, A., Onwona-Agyeman, B., & Nyankson, E. (2018). Application of clay ceramics and nanotechnology in water treatment: A review. Cogent Engineering, 5(1), 1476017.

    Article  Google Scholar 

  • Arfin, N., & Bohidar, H. B. (2014). Ergodic-to-nonergodic phase inversion and reentrant ergodicity transition in DNA–nanoclay dispersions. Soft Matter, 10(1), 149–156.

    Article  Google Scholar 

  • Arfin, N., Aswal, V. K., & Bohidar, H. B. (2014). Overcharging, thermal, viscoelastic and hydration properties of DNA–gelatin complex coacervates: Pharmaceutical and food industries. RSC Advances, 4(23), 11705–11713.

    Article  Google Scholar 

  • Avery, R. G., & Ramsay, J. D. F. (1986). Colloidal properties of synthetic hectorite clay dispersions: II. Light and small angle neutron scattering. Journal of Colloid and Interface Science, 109(2), 448–454.

    Article  Google Scholar 

  • Bandyopadhyay, R., Liang, D., Yardimci, H., Sessoms, D. A., Borthwick, M. A., Mochrie, S. G. J., Harden, J. L., & Leheny, R. L. (2004). Evolution of particle-scale dynamics in an aging clay suspension. Physical Review Letters, 93(22), 228302.

    Article  Google Scholar 

  • Barnes, H. A. (2000). A Handbook of Elementary Rheology. University of Wales.

    Google Scholar 

  • Bellour, M., Knaebel, A., Harden, J. L., Lequeux, F., & Munch, J. P. (2003). Aging processes and scale dependence in soft glassy colloidal suspensions. Physical Review E, 67, 031405.

    Article  Google Scholar 

  • Bonn, D., Kellay, H., Tanaka, H., Wegdam, G., & Meunier, J. (1999). Laponite: What is the difference between a gel and a glass? Langmuir, 15(22), 7534–7536.

    Article  Google Scholar 

  • Broderick, G. P., & Daniel, D. E. (1990). Stabilizing compacted clay against chemical attack. Journal of Geotechnical Engineering, 116(10), 1549–1567.

    Article  Google Scholar 

  • Brown, K., Mendoza, M., Tinsley, T., Bee-DiGregorio, M. Y., Bible, M., Brooks, J. L., Colorado, M., Esenther, J., Farag, A., Gill, R., Kalivas, E. N., Lara, R., Lutz, A., Nazaire, J., Mazo, A. R., Rodriguez, R. S., Schwabacher, J. C., Zestos, A. G., Hartings, M. R., & Fox, D. M. (2021). Polyvinyl alcohol-montmorillonite composites for water purification: Analysis of clay mineral cation exchange and composite particle synthesis. Polyhedron, 205, 115297.

    Article  Google Scholar 

  • Chandio, A. D., Channa, I. A., Rizwan, M., Akram, S., Javed, M. S., Siyal, S. H., Saleem, M., Makhdoom, M. A., Ashfaq, T., Khan, S., Hussain, S., Albaqami, M. D., & Alotabi, R. G. (2021). Polyvinyl alcohol and nano-clay based solution processed packaging coatings. Coatings, 11(8), 942.

    Article  Google Scholar 

  • Chang, S. H., Ryan, M. E., & Gupta, R. K. (1993). The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheologica Acta, 32, 263–269.

    Article  Google Scholar 

  • Chatani, E., Inoue, R., Imamura, H., Sugiyama, M., Kato, M., Yamamoto, M., Nishida, K., & Kanaya, T. (2015). Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering. Scientific Reports, 5, 15485.

    Article  Google Scholar 

  • Chen, G., Li, D., Li, J., Cao, X., Wang, J., Shi, X., & Guo, R. (2015). Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New Journal of Chemistry, 39, 2847–2855.

    Article  Google Scholar 

  • Chrzanowski, W., Kim, S. Y., & Neel, E. A. A. (2013). Biomedical applications of clay. Australian Journal of Chemistry, 66(11), 1315–1322.

    Article  Google Scholar 

  • Coviello, T., Burchard, W., Geissler, E., & Maier, D. (1997). Static and dynamic light scattering by a thermoreversible gel from Rhizobium leguminosarum 8002 Exopolysaccharide. Macromolecules, 30(7), 2008–2015.

    Article  Google Scholar 

  • Cui, Y., Pizzey, C. L., & van Duijneveldt, J. S. (2013). Modifying the structure and flow behavior of aqueous montmorillonite suspensions with surfactant. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1988), 20120262.

    Article  Google Scholar 

  • Cummins, H. Z. (2007). Liquid, glass, gel: The phases of colloidal laponite. Journal of Non-Crystalline Solids, 353(41–43), 3891–3905.

    Article  Google Scholar 

  • Dawson, J. I., Kanczler, J. M., Yang, X. B., Attard, G. S., & Oreffo, R. O. C. (2011). Clay gels for the delivery of regenerative microenvironments. Advanced Materials, 23(29), 3304–3308.

    Article  Google Scholar 

  • Ding, L., Hu, Y., Luo, Y., Zhu, J., Wu, Y., Yu, Z., Cao, X., Peng, C., Shi, X., & Guo, R. (2016). Laponite® stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomaterials Science, 4(3), 474–482.

    Article  Google Scholar 

  • Fernandez, F., & Quigley, R. M. (1991). Controlling the destructive effect of clay-organic liquid interactions by application of effective stress. Canadian Geotechnical Journal, 28(3), 388–398.

    Article  Google Scholar 

  • Franke, D., Kikhney, A. G., & Svergun, D. I. (2012). Automated acquisition and analysis of small angle X-ray scattering data. Nuclear Instruments and Methods in Physics Research A, 689, 52–59.

    Article  Google Scholar 

  • Garcia, P. C., & Whitby, C. P. (2012). Laponite stabilised oil-in-water emulsions: Viscoelasticity and thixotropy. Soft Matter, 8(5), 1609–1615.

    Article  Google Scholar 

  • Gonçalves, M., Figueira, P., Maciel, D., Rodrigues, J., Qu, X., Liu, C., Tomás, H., & Li, Y. (2014). pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomaterialia, 10(1), 300–307.

    Article  Google Scholar 

  • Goodarzi, A. R., Fateh, S. N., & Shekary, H. (2016). Impact of organic pollutants on the macro and microstructure responses of Na-bentonite. Applied Clay Science, 121–122, 17–28.

    Article  Google Scholar 

  • Jabbari-Farouji, S., Tanaka, H., Wegdam, G. H., & Bonn, D. (2008). Multiple nonergodic disordered states in Laponite suspensions: A phase diagram. Physical Review E, 78(6), 061405.

    Article  Google Scholar 

  • Joshi, Y. M., Reddy, G. R. K., Kulkarni, A. L., Kumar, N., & Chhabra, R. P. (2008). Rheological behavior of aqueous suspensions of laponite: New insights into the ageing phenomena. Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences, 464(2090), 469–489.

    Article  Google Scholar 

  • Keren, R. (1989). Effect of clay charge density and adsorbed ions on the rheology of montmorillonite suspension. Soil Science Society of America Journal, 53(1), 25–29.

    Article  Google Scholar 

  • Kikhney, A. G., & Svergun, D. I. (2015). A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Letters, 589(19 Pt A), 2570–2577.

    Article  Google Scholar 

  • Kim, M. H., Choi, G., Elzatahry, A., Vinu, A., Choy, Y. B., & Choy, J. H. (2016). Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays and Clay Minerals, 64(2), 115–130.

    Article  Google Scholar 

  • Kimura, Y., & Haraguchi, K. (2017). Clay–alcohol–water dispersions: Anomalous viscosity changes due to network formation of clay nanosheets induced by alcohol clustering. Langmuir, 33(19), 4758–4768.

    Article  Google Scholar 

  • Knaebel, A., Bellour, M., Munch, J. P., Viasnoff, V., Lequeux, F., & Harden, J. L. (2000). Aging behavior of laponite clay particle suspensions. Europhysics Letters, 52(1), 73–79.

    Article  Google Scholar 

  • Kretzschmar, R., Holthoff, H., & Sticher, H. (1998). Influence of pH and Humic Acid on Coagulation Kinetics of Kaolinite: A Dynamic Light Scattering Study. Journal of Colloid and Interface Science, 202(1), 95–103.

    Article  Google Scholar 

  • Kroon, M., Wegdam, G. H., & Sprik, R. (1996). Dynamic light scattering studies on the sol-gel transition of a suspension of anisotropic colloidal particles. Physical Review E, 54(6), 6541–6550.

    Article  Google Scholar 

  • Lecomte, A., Dauger, A., & Lenormand, P. (2000). Dynamical scaling property of colloidal aggregation in a zirconia-based precursor sol during gelation. Journal of Applied Crystallography, 33(3–1), 496–499.

    Article  Google Scholar 

  • Li, L., Harnau, L., Rosenfeldt, S., & Ballauff, M. (2005). Effective interaction of charged platelets in aqueous solution: Investigations of colloid laponite suspensions by static light scattering and small-angle x-ray scattering. Physical Review E, 72, 051504.

    Article  Google Scholar 

  • Lin, S. H., Hsiao, R. C., & Juang, R. S. (2006). Removal of soluble organics from water by a hybrid process of clay adsorption and membrane filtration. Journal of Hazardous Materials, 135(1–3), 134–140.

    Article  Google Scholar 

  • Londoño, O. M., Tancredi, P., Rivas, P., Muraca, D., Socolovsky, L. M., & Knobel, M. (2018). Small angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. In S. K. Sharma (Ed.), Handbook of Materials Characterization (pp. 37–75). Springer.

    Chapter  Google Scholar 

  • Luckham, P. F., & Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82(1–3), 43–92.

    Article  Google Scholar 

  • Martin, C., Pignon, F., Piau, J.-M., Magnin, A., Lindner, P., & Cabane, B. (2002). Dissociation of thixotropic clay gels. Physical Review E, 66, 021401.

    Article  Google Scholar 

  • Mihaila, S. M., Gaharwar, A. K., Reis, R. L., Khademhosseini, A., Marques, A. P., & Gomes, M. E. (2014). The osteogenic differentiation of SSEA-4 sub population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 35(33), 9087–9099.

    Article  Google Scholar 

  • Mongondry, P., Tassin, J. F., & Nicolai, T. (2005). Revised state diagram of laponite dispersions. Journal of Colloid and Interface Science, 283(2), 397–405.

    Article  Google Scholar 

  • Mori, Y., Togashi, K., & Nakamura, K. (2001). Colloidal properties of synthetic hectorite clay dispersion measured by dynamic light scattering and small angle X-ray scattering. Advanced Powder Technology, 12(1), 45–59.

    Article  Google Scholar 

  • Mornet, S., Vasseur, S., Grasset, F., & Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14(14), 2161–2175.

    Article  Google Scholar 

  • Morvan, M., Espinat, D., Lambard, J., & Zemb, T. (1994). Ultrasmall and small angle X-ray scattering of smectite clay suspensions. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 82(2), 193–203.

    Article  Google Scholar 

  • Mourchid, A., & Levitz, P. (1998). Long-term gelation of laponite aqueous dispersions. Physical Review E, 57(5), R4887–R4890.

    Article  Google Scholar 

  • Mourchid, A., Delville, A., Lambard, J., LeColier, E., & Levitz, P. (1995). Phase diagram of colloidal dispersions of anisotropic charged particles: Equilibrium properties, structure and rheology of laponite suspensions. Langmuir, 11(6), 1942–1950.

    Article  Google Scholar 

  • Mourchid, A., LéColier, E., Damme, H. V., & Levitz, P. (1998). On viscoelastic, birefringent, and swelling properties of laponite clay suspensions: Revisited phase diagram. Langmuir, 14(17), 4718–4723.

    Article  Google Scholar 

  • Mousty, C. (2010). Biosensing applications of clay-modified electrodes: A review. Analytical and Bioanalytical Chemistry, 396, 315–325.

    Article  Google Scholar 

  • Neaman, A., & Singer, A. (2000). Rheology of mixed palygorskite-montmorillonite suspensions. Clay and Clay Minerals, 48(6), 713–715.

    Article  Google Scholar 

  • Nicolai, T., & Cocard, S. (2000). Light scattering study of the dispersion of laponite. Langmuir, 16(21), 8189–8193.

    Article  Google Scholar 

  • Pawar, N., & Bohidar, H. B. (2009). Hydrophobic hydration mediated universal self-association of colloidal nanoclay particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 333(1–3), 120–125.

    Article  Google Scholar 

  • Permien, T., & Lagaly, G. (1994). The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds IV. Sodium montmorillonite and acids. Applied Clay Science, 9(4), 251–263.

    Article  Google Scholar 

  • Pignon, F., Magnin, A., Piau, J. M., Cabane, B., Lindner, P., & Diat, O. (1997a). Yield stress thixotropic clay suspension: Investigations of structure by light, neutron, and x-ray scattering. Physical Review E, 56(3), 3281–3289.

    Article  Google Scholar 

  • Pignon, F., Magnin, A., & Piau, J. M. (1997b). Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel. Physical Review Letters, 79(23), 4689–4692.

    Article  Google Scholar 

  • Pignon, F., Magnin, A., & Piau, J. M. (1998). Thixotropic behavior of clay dispersions: Combinations of scattering and rheometric techniques. Journal of Rheology, 42(6), 1349–1373.

    Article  Google Scholar 

  • Pujala, R. K., & Bohidar, H. B. (2013). Kinetics of anisotropic ordering in laponite dispersions induced by a water-air interface. Physical Review E Statistical, Nonlinear, and Soft Matter Physics, 88(5), 052310.

    Article  Google Scholar 

  • Pujala, R. K., & Bohidar, H. B. (2019). Hierarchical self-assembly, spongy architecture, liquid crystalline behavior and phase diagram of Laponite nanoplatelets in alcohol-water binary solvents. Journal of Colloid and Interface Science, 554, 731–742.

    Article  Google Scholar 

  • Pujala, R. K., Pawar, N., & Bohidar, H. B. (2011a). Unified scaling behavior of physical properties of clays in alcohol solutions. Journal of Colloid and Interface Science, 364, 311–316.

    Article  Google Scholar 

  • Pujala, R. K., Pawar, N., & Bohidar, H. B. (2011b). Universal sol state behavior and gelation kinetics in mixed clay dispersions. Langmuir, 27(9), 5193–5203.

    Article  Google Scholar 

  • Pujala, R. K., Joshi, N., & Bohidar, H. B. (2015). Spontaneous evolution of self-assembled phases from anisotropic colloidal dispersions. Colloid and Polymer Science, 293, 2883–2890.

    Article  Google Scholar 

  • Ramsay, J. D. F. (1986). Colloidal properties of synthetic hectorite clay dispersions: I. Rheology. Journal of Colloid and Interface Science, 109(2), 441–447.

    Article  Google Scholar 

  • Ramsay, J. D. F., & Lindner, P. (1993). Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. Journal of the Chemical Society, Faraday Transactions, 89(23), 4207–4214.

    Article  Google Scholar 

  • Ranganathan, V. T., & Bandyopadhyay, R. (2017). Effects of aging on the yielding behavior of acid and salt induced laponite gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 304–309.

    Article  Google Scholar 

  • Rao, Y. (2010). Nanofluids: Stability, phase diagram, rheology and applications. Particuology, 8(6), 549–555.

    Article  Google Scholar 

  • Ravi Kumar, N. V. N., Muralidhar, K., & Joshi, Y. M. (2008). On the refractive index of ageing dispersions of laponite. Applied Clay Science, 42(1–2), 326–330.

    Article  Google Scholar 

  • Reffitt, D. M., Ogston, N., Jugdaohsingh, R., Cheung, H. F. J., Evans, B. A. J., Thompson, R. P. H., Powell, J. J., & Hampson, G. N. (2003). Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast like cells in vitro. Bone, 32(2), 127–135.

    Article  Google Scholar 

  • Rodrigues, L. A. S., Figueiras, A., Veiga, F., de Freitas, R. M., Nunes, L. C. C., Filho, E. C. S., & Leite, C. M. S. (2013). The systems containing clays and clay minerals from modified drug release: A review. Colloids and Surfaces b: Biointerfaces, 103, 642–651.

    Article  Google Scholar 

  • Ruzicka, B., & Zaccarelli, E. (2011). A fresh look at the laponite phase diagram. Soft Matter, 7(4), 1268–1286.

    Article  Google Scholar 

  • Ruzicka, B., Zulian, L., & Ruocco, G. (2004). Routes to gelation in a clay suspension. Physical Review Letters, 93(25), 258301.

    Article  Google Scholar 

  • Ruzicka, B., Zulian, L., & Ruocco, G. (2006). More on the phase diagram of laponite. Langmuir, 22(3), 1106–1111.

    Article  Google Scholar 

  • Ruzicka, B., Zulian, L., Zaccarelli, E., Angelini, R., Sztucki, M., Moussaïd, A., & Ruocco, G. (2010). Competing interactions in arrested states of colloidal clays. Physical Review Letters, 104(8), 085701.

    Article  Google Scholar 

  • Sentenac, P., Lynch, R. J., Bolton, M. D., & Taylor, R. N. (2007). Alcohol’s effect on the hydraulic conductivity of consolidated clay. Environmental Geology, 52, 1595–1600.

    Article  Google Scholar 

  • Sentenac, P., Ayeni, S., & Lynch, R. J. (2012). Effects of gasoline and diesel additives on kaolinite. Environmental Earth Sciences, 66, 783–792.

    Article  Google Scholar 

  • Seydibeyoglu, M., Demiroglu, S., Atagur, M., & Ocaktan, S. Y. (2017). Modification of clay crystal structure with different alcohols. Natural Resources, 8(11), 709–715.

    Article  Google Scholar 

  • Shahin, A., & Joshi, Y. M. (2010). Irreversible aging dynamics and generic phase behavior of suspensions of laponite. Langmuir, 26(6), 4219–4225.

    Article  Google Scholar 

  • Teh, E. J., Leong, Y. K., Liu, Y., Fourie, A. B., & Fahey, M. (2009). Differences in the rheology and surface chemistry of kaolin clay slurries: The source of the variations. Chemical Engineering Science, 64(17), 3817–3825.

    Article  Google Scholar 

  • Tomás, H., Alves, C. S., & Rodrigues, J. (2017). Laponite®: A key nanoplatform for biomedical applications? Nanomedicine: Nanotechnology Biology, and Medicine, 14(7), 2407–2420.

    Article  Google Scholar 

  • Wang, S., Wu, Y., Guo, R., Huang, Y., Wen, S., Shen, M., Wang, J., & Shi, X. (2013). Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir, 29(16), 5030–5036.

    Article  Google Scholar 

  • Wu, Y., Guo, R., Wen, S., Shen, M., Zhu, M., Wang, J., & Shi, X. (2014). Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. Journal of Materials Chemistry B, 2(42), 7410–7418.

    Article  Google Scholar 

  • Zhuang, Y., Zhao, L., Zheng, L., Hu, Y., Ding, L., Li, X., Liu, C., Zhao, J., Shi, X., & Guo, R. (2017). Laponite-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy. ACS Biomaterials Science & Engineering, 3(3), 431–442.

    Article  Google Scholar 

Download references

Acknowledgements

Ms Preeti Tiwari is grateful to the Council of Scientific and Industrial Research (CSIR) for the CSIR-SRF fellowship (09/466(0222))/2019-EMR-I. The authors are also grateful to the UGC start-up grant (F.30-359/2017(BSR)) for funding. Avik Das and Jitendra Bahadur acknowledge Dr S. M. Yusuf, Director of Physics Group, Bhabha Atomic Research Centre, for his support and encouragement for the SAXS beamline (BL-18) activity. The authors also acknowledge Aroma Chemical Agencies (India) Pvt. Ltd. for the supply of Laponite® RD (BYK-Additives and Instruments, UK) and the Central Instrumentation Facility, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, for the instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmul Arfin.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Associate Editor: Geoffrey Bowers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, P., Bohidar, H.B., Das, A. et al. Anomalous Viscosity, Aggregation, and Non-Ergodic Phase of Laponite® RD in a Water–Methanol Binary Solvent. Clays Clay Miner. 71, 1–13 (2023). https://doi.org/10.1007/s42860-023-00229-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00229-5

Keywords

Navigation