Skip to main content
Log in

Strategy for the Identification of Optimal Network Distribution Through Network Reconfiguration Using Graph Theory Techniques − Status and Technology Review

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Nowadays, power system reconfiguration has received much interest and has achieved significant progress. Reconfiguration can be accomplished by modifying the status of the sectionalizing switches or tie switches. The main objective of a network reconfiguration strategy is to reduce power loss, relieve overloading and improve load end voltage profile. This study reviews the advancement of power system reconfiguration research using graph theory including optimization-based approaches. In the context of determining the optimal radial network using graph theory-based strategies are also discussed. Network reconfiguration mechanism, which includes different graph theory analysis such as Prim’s Minimal Spanning Tree, Dijkstra’s Shortest Path Algorithm, Kruskal’s Maximal Spanning Tree, Edmonds’ Maximal Spanning Tree are presented. Four different code for the above graph theory techniques which already been implemented by previous researchers have been simulated and generate candidate solutions for 14 node system. The simulations demonstrate step by step procedure of the network reconfiguration mechanism. Moreover, simulation results verify that the graph theory approach can give good solution for Network reconfiguration with optimal radial network, less power loss and higher level of load voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mosbah M, Arif S, Mohammedi RD, Hellal A (2017) Optimum dynamic distribution network reconfiguration using minimum spanning tree algorithm. 2017 5th Int Conf Electrical Eng Boumerdes (ICEE-B) 1–6. https://doi.org/10.1109/ICEE-B.2017.8192170

  2. Ahmadi H, Martí JR (2015) Minimum-loss network reconfiguration: A minimum spanning tree problem. Sustain Energy Grids Netw 1:1–9, ISSN 2352–4677. https://doi.org/10.1016/j.segan.2014.10.001

  3. Montoya DP, Ramirez JM (2012) A minimal spanning tree algorithm for distribution networks configuration. IEEE Power Energy Soc General Meet 1-7. https://doi.org/10.1109/PESGM.2012.6344718

  4. Sarkar D, Goswami S, De A, Chanda CK, Mukhopadhyay K (2011) Improvement of Voltage Stability Margin in a Reconfigured Radial Power Network using Graph Theory. Canadian J Electrical Electron Eng 2(9):454–462

    Google Scholar 

  5. Sarkar D, De A, Chanda CK, Goswami S (2015) Kruskal’s Maximal Spanning Tree Algorithm for Optimizing distribution Network Topology to Improve Voltage Stability. Electric Power Components Syst. https://doi.org/10.1080/15325008.2015.1062818

    Article  Google Scholar 

  6. Sarkar D, Konwar P, De A, Goswami S (2015) A graph theory application for fast and efficient search of optimal radialized distribution network topology. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2019.02.003

    Article  Google Scholar 

  7. Konwar P, Sarkar D, Chanda CK (2020) Graphical Approach to Recognize Optimal Distribution Network Reconfiguration. Adv Energy Control Syst 73–87. Springer, Singapore. https://doi.org/10.1007/978-981-16-7274-3_6

  8. Swathika OVG, Hemamalini S (2016) Prims-Aided Dijkstra Algorithm for Adaptive Protection in Microgrids. IEEE J Emerg Select Topics Power Electron 4(4):1279–1286. https://doi.org/10.1109/JESTPE.2016.2581986

    Article  Google Scholar 

  9. Mohamed Diaaeldin I, Abdel Aleem SH, El-Rafei A, Abdelaziz AY, Zobaa AF (2019) A novel graphically-based network reconfiguration for power loss minimization in large distribution systems. Mathematics 7(12):1182. https://doi.org/10.3390/math7121182

    Article  Google Scholar 

  10. Mahapatra S, Swathika OVG (2018) Hybrid Prims-Viterbi’s Algorithm for Protecting Multiple Utility Grids Interfaced Microgrid. J Telecommun Electron Comput Eng 10:1–9

    Google Scholar 

  11. Dolatdar E, Soleymani S, Mozafari B (2009) A New Distribution Network Reconfiguration Approach using a Tree Model. World Acad Sci Eng Technol 58, 3(10):2480–2487

  12. Barbehenn M (1998) A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices. IEEE Transact Comput 47(2):263

    Article  MathSciNet  Google Scholar 

  13. Tommiska M, Skyttä J (2001) Dijkstra’s Shortest Path Routing Algorithm in Reconfigurable Hardware. Int Conf Field Program Logic Appl 653-657. https://doi.org/10.1007/3-540-44687-7_73

  14. Swathika OVG, Hemamalini S (2017) Prims Aided Floyd Warshall Algorithm for Shortest Path Identification in Microgrid. Emerg Trends Electrical Commun Inf Technol 394: 283–291, Springer, Singapore. https://doi.org/10.1007/978-981-10-1540-3_30

  15. Swathika OVG, Banerjee N, Pranesh SK (2017) Hybrid Kruskal’s -Dijkstra’s Algorithm for Shortest Path Identification in Reconfigurable Microgrid. Adv Sci Lett 23(5):4215–4218. https://doi.org/10.1166/asl.2017.8310

    Article  Google Scholar 

  16. Ibrahim MMR, Mostafa HA, Salama MMA, El-Shatshat R, Shaban KB (2018) A graph-theoretic service restoration algorithm for power distribution systems. Int Conf Innov Trends Comput Eng (ITCE) Aswan, 338–343. https://doi.org/10.1109/ITCE.2018.8316647

  17. Morton AB, Mareels IMY (2000) An efficient brute-force solution to the network reconfiguration problem. IEEE Transact Power Delivery 15(3):996–1000. https://doi.org/10.1109/61.871365

    Article  Google Scholar 

  18. Salman N, Mohammed A, Shareef H (2009) Reinforcement of power distribution network against voltage sags using graph theory. IEEE Student Conf Res Dev (SCOReD) 341-344. https://doi.org/10.1109/SCORED.2009.5443004

  19. Aman MM, Jasmon GB, Abu Bakar AH, Mokhlis H, Naidu K (2016) Graph theory-based radial load flow analysis to solve the dynamic network reconfiguration problem. Int Trans Electr Energ Syst 26:783–808. https://doi.org/10.1002/etep.2108

    Article  Google Scholar 

  20. Sarma NDR, Prasad VC, Prakasa Rao KS, Sankar V (1994) A new network reconfiguration technique for service restoration in distribution networks. IEEE Transact Power Delivery 9(4):1936–1942. https://doi.org/10.1109/61.329526

    Article  Google Scholar 

  21. Certuche-Alzate JP, Velez-Reyes M (2009) A reconfiguration algorithm for a DC Zonal Electric Distribution System based on graph theory methods IEEE Electric Ship Technol Symp Baltimore. 235–241. https://doi.org/10.1109/ESTS.2009.4906521

  22. Xiaoming C, Yongjin C, Zhaolong W, Yingqi Y, Huixian R(2018) Flexible distribution system reconfiguration using graph theory and topology identification technology. In: International conference on power system technology (POWERCON), Guangzhou, pp 2008–2014. https://doi.org/10.1109/POWERCON.2018.8602307

  23. Abul’Wafa AR (2011) A new heuristic approach for optimal reconfiguration in distribution systems. Electric Power Syst Res 81(2):282–289. https://doi.org/10.1016/j.epsr.2010.09.003

    Article  Google Scholar 

  24. Sudhakar TD, Srinivas KN (2011) Power system reconfiguration based on Prim's algorithm. 1st Int Conf Electr Energ Syst 12–20. https://doi.org/10.1109/ICEES.2011.5725295

  25. Carreno EM, Romero R, Padilha-Feltrin A (2008) An Efficient Codification to Solve Distribution Network Reconfiguration for Loss Reduction Problem. IEEE Transact Power Syst 23(4):1542–1551. https://doi.org/10.1109/TPWRS.2008.2002178

    Article  Google Scholar 

  26. Jian-Jun Y, Hong Z (2010) Application of the improved genetic algorithm based on graph theory in distribution network reconfiguration. Power system Protection and Control, China, 266033(2010-21)

  27. Jakus D, Čađenović R, Bogdanović M, Sarajčev P, Vasilj J (2017) Distribution network reconfiguration using hybrid heuristic — Genetic algorithm. 2nd Int Multidisciplinary Conf Comput Energ Sci (SpliTech) 1–6

  28. Jabr RA, Singh R, Pal BC (2012) Minimum Loss Network Reconfiguration Using Mixed-Integer Convex Programming. IEEE Transact Power Syst 27(2):1106–1115. https://doi.org/10.1109/TPWRS.2011.2180406

    Article  Google Scholar 

  29. Nguyen TT, Truong AV (2015) Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm. Int J Electr Power Energ Syst 68:233–242, ISSN 0142–0615. https://doi.org/10.1016/j.ijepes.2014.12.075

  30. Alonso FR, Oliveira DQ, Zambroni de Souza AC (2015) Artificial Immune Systems Optimization Approach for Multiobjective Distribution System Reconfiguration. IEEE Transact Power Syst 30(2):840–847. https://doi.org/10.1109/TPWRS.2014.2330628

    Article  Google Scholar 

  31. Gunturi SK, Sarkar D, Sumi L, De A (2022) A Combined Graph Theory-Machine Learning Strategy for Planning Optimal Radial Topology of Distribution Networks. Electr Power Components Syst. https://doi.org/10.1080/15325008.2022.2050444

    Article  Google Scholar 

  32. Swarnkar A, Gupta N, Niazi KR (2011) A novel codification for meta-heuristic techniques used in distribution network reconfiguration. Electr Power Syst Res 81(7):1619–1626. https://doi.org/10.1016/j.epsr.2011.03.020

    Article  Google Scholar 

  33. Chouhan S, Wan H, Lai HJ, Feliachi HJ, Choudhry MA (2009) Intelligent reconfiguration of smart distribution network using multi-agent technology. IEEE Power Energ Soc General Meet Calgary 1–6. https://doi.org/10.1109/PES.2009.5275356

  34. Yuehao Y, Zhongqing Z, Wei B, Jun X, Limin Q, Yaoheng D (2016) Optimal distribution network reconfiguration for load balancing. China Int Conf Electr Distrib (CICED) Xi'an 1–4. https://doi.org/10.1109/CICED.2016.7576313

  35. Ahmadi H, Martí JR (2015) Mathematical representation of radiality constraint in distribution system reconfiguration problem. Int J Electr Power Energ Sys 64:293–299, ISSN 0142–0615. https://doi.org/10.1016/j.ijepes.2014.06.076

  36. Swarnkar A, Gupta N, Niazi KR (2012) Distribution network reconfiguration using population-based AI techniques: A comparative analysis. IEEE Power Energ Soc General Meet, San Diego, CA 1–6. https://doi.org/10.1109/PESGM.2012.6345013

  37. Navarro BB, Cruz IBNC, Malquisto BM (2012) Radial network reconfiguration and load balancing for loss minimization using genetic algorithms. TENCON 2012 IEEE Region 10 Conf 1–6. https://doi.org/10.1109/TENCON.2012.6412219

  38. Raut U, Mishra S (2017) Power distribution network reconfiguration for loss minimization using a new graph theory based genetic algorithm. IEEE Calcutta Conf (CALCON) 1–5. https://doi.org/10.1109/CALCON.2017.8280684

  39. Luo L, Ma J, Wang H, Luo S (2020) Optimal Network Reconfiguration Using Beetle Antennae Search Based on the Prim Algorithm. 35th Youth Acad Ann Conf Chin Assoc Automation (YAC) 656–660. https://doi.org/10.1109/YAC51587.2020.9337690

  40. Li H, Mao W, Zhang A, Li C (2016) An improved distribution network reconfiguration method based on minimum spanning tree algorithm and heuristic rules. Int J Electr Power Energ Syst 82:466–473, ISSN 0142–0615. https://doi.org/10.1016/j.ijepes.2016.04.017

  41. Sarkar D, Gunturi SK (2021) Machine Learning Enabled Steady-State Security Predictor as Deployed for Distribution Feeder Reconfiguration. J Electr Eng Technol 16(3):1197–1206

    Article  Google Scholar 

  42. Odyuo Y, Sarkar D, Sumi L (2021) Optimal feeder reconfiguration in distributed generation environment under time-varying loading condition. SN Appl Sci 3(6):1–18

    Article  Google Scholar 

  43. Sarkar D, Chakrabarty M, De A, Goswami S (2020) Emergency restoration based on priority of load importance using Floyd–Warshall shortest path algorithm. Comput Adv Commun Circuits Syst 59–72

  44. Sarkar D, Chakrabarty M, Ghosh R, Basak R (2020) An Offline Strategic Planning for Service Restoration Using Multi-Constraints Priority-Based Dijkstra’s Algorithm. J Inst Eng (India): Ser B 309–320

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipu Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konwar, P., Sarkar, D. Strategy for the Identification of Optimal Network Distribution Through Network Reconfiguration Using Graph Theory Techniques − Status and Technology Review. J. Electr. Eng. Technol. 17, 3263–3274 (2022). https://doi.org/10.1007/s42835-022-01139-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-022-01139-7

Keywords

Navigation