Skip to main content
Log in

A Novel NASICON-Type Na3.5MnCr0.5Ti0.5(PO4)3 Nanofiber with Multi-electron Reaction for High-Performance Sodium-Ion Batteries

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Sodium superionic conductors (NASICONs) show significant promise for application in the development of cathodes for sodium-ion batteries (SIBs). However, it remains a major challenge to develop the desired multi-electron reaction cathode with a high specific capacity and energy density. Herein, we report a novel NASICON-type Na3.5MnCr0.5Ti0.5(PO4)3 cathode obtained by combining electrospinning and stepwise sintering processes. This cathode exhibits a high discharge capacity of 160.4 mAh g−1 and operates at a considerable medium voltage of 3.2 V. The Na3.5MnCr0.5Ti0.5(PO4)3 cathode undergoes a multi-electron redox reaction involving the Cr3+/4+ (4.40/4.31 V vs. Na/Na+), Mn3+/4+ (4.18/4.03 V), Mn2+/3+ (3.74/3.41 V), and Ti3+/4+ (2.04/2.14 V) redox couples. This redox reaction enables a three-electron transfer during the Na+ intercalation/de-intercalation processes. As a result, the Na3.5MnCr0.5Ti0.5(PO4)3 demonstrates a significant enhancement in energy density, surpassing other recently reported SIB cathodes. The highly reversible structure evolution and small volume changes during cycling were demonstrated with in-situ X-ray diffraction, ensuring outstanding cyclability with 77% capacity retention after 500 cycles. Furthermore, a NMCTP@C//Sb@C full battery was fabricated, which delivered a high energy density of 421 Wh kg−1 and exhibited good cyclability with 75.7% capacity retention after 100 cycles. The rational design of composition regulation with multi-metal ion substitution holds the potential to unlock new possibilities in achieving high-performance SIBs.

Graphical Abstract

A novel NASICON-structured Na3.5MnCr0.5Ti0.5(PO4)3 nanofiber was successfully designed and prepared. This nanofiber was employed to research the multi-electron reaction and the resulting structural evolution in SIBs. The optimal Na-migration pathway has also been investigated by DFT computations. A full SIB battery was fabricated and delivered a high energy density (421 Wh kg−1) and cyclability (75.7% after 100 cycles at 100 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data substantiating the findings of this study can be accessed from the corresponding author upon a reasonable request.

References

  1. Wang QC, Feng QG, Lei YP, Tang SH, Xu L, Xiong Y, Fang GZ, Wang YC, Yang PY, Liu JJ, Liu W, Xiong X. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat Commun. 2022;13:3689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deng DN, Wu J, Feng QG, Zhao X, Liu MJ, Bai Y, Wang JX, Zheng XR, Jiang JB, Zhuang ZC, Xiong X, Wang DS, Lei YP. Highly reversible zinc-air batteries at -40℃ enabled by anion-mediated biomimetic fat. Adv Funct Mater. 2024;34:2308762. 

    Article  Google Scholar 

  3. Zhang W, Dai YH, Chen RW, Xu ZM, Li JW, Zong W, Li HX, Li Z, Zhang ZY, Zhu JX, Guo F, Gao X, Du ZJ, Chen JT, Wang TL, He GJ, Parkin IP. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew Chem Int Ed. 2023;62:2212695.

    Google Scholar 

  4. Zhang W, Wu YL, Xu ZM, Li HX, Xu M, Li JW, Dai YH, Zong W, Chen RW, He L, Zhang ZA, Brett DJL, He GJ, Lai YQ, Parkin IP. Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv Energy Mater. 2022;12:2201065.

    Article  CAS  Google Scholar 

  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636.

    Article  CAS  PubMed  Google Scholar 

  6. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013.

    Article  Google Scholar 

  7. Hirsh HS, Li YX, Tan DHS, Zhang MH, Zhao EY, Meng YS. Sodium-ion batteries paving the way for grid energy storage. Adv Energy Mater. 2020;10:2001274.

    Article  CAS  Google Scholar 

  8. Zhao CL, Wang QD, Yao ZP, Wang JL, Sánchez-Lengeling B, Ding FX, Qi XG, Lu YX, Bai XD, Li BH, Li H, Aspuru-Guzik A, Huang XJ, Delmas C, Wagemaker M, Chen LQ, Hu YS. Rational design of layered oxide materials for sodium-ion batteries. Science. 2020;370:708.

    Article  CAS  PubMed  Google Scholar 

  9. Liu TF, Zhang YP, Chen C, Lin Z, Zhang SQ, Lu J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat Commun. 2019;10:1965.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang WL, Gang Y, Hu Z, Yan ZC, Li WJ, Li YC, Gu QF, Wang ZX, Chou SL, Liu HK, Dou SX. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun. 2020;11:980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao RM, Zheng ZJ, Wang PF, Wang CY, Ye H, Cao FF. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2020;30:9.

    Article  Google Scholar 

  12. Xiong HL, Sun G, Liu ZL, Zhang L, Li L, Zhang W, Du F, Qiao ZA. Polymer stabilized droplet templating towards tunable hierarchical porosity in single crystalline Na3V2(PO4)3 for enhanced sodium-ion storage. Angew Chem Int Ed. 2021;60:10334.

    Article  CAS  Google Scholar 

  13. Guo DL, Qin JW, Yin ZG, Bai JM, Sun YK, Cao MH. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy. 2018;45:136.

    Article  CAS  Google Scholar 

  14. Jiang Y, Zhou XF, Li DJ, Cheng XL, Liu FF, Yu Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv Energy Mater. 2018;8:1800068.

    Article  Google Scholar 

  15. Zhou YF, Xu GF, Lin JD, Zhang YP, Fang GZ, Zhou J, Cao XX, Liang SQ. Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv Mater. 2023;35:2304428.

    Article  CAS  Google Scholar 

  16. Zhou H, Cao ZT, Zhou YF, Li JX, Ling ZH, Fang GZ, Liang SQ, Cao XX. Unlocking rapid and robust sodium storage of fluorophosphate cathode via multivalent anion substitution. Nano Energy. 2023;114: 108604.

    Article  CAS  Google Scholar 

  17. Zhang KY, Gu ZY, Ang EHX, Guo JZ, Wang XT, Wang YL, Wu XL. Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and application prospects. Mater Today. 2022;54:189.

    Article  CAS  Google Scholar 

  18. Gu ZY, Heng YL, Guo JZ, Cao JM, Wang XT, Zhao XX, Sun ZH, Zheng SH, Liang HJ, Li B, Wu XL. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Res. 2022;16:439.

    Article  Google Scholar 

  19. Zhang W, Wu YL, Dai YH, Xu ZM, He L, Li Z, Li SH, Chen RW, Gao X, Zong W, Guo F, Zhu JX, Dong HB, Li JW, Ye CM, Li SM, Wu FX, Zhang ZA, He GJ, Lai YQ, Parkin IP. “Mn-locking” effect by anionic coordination manipulation stabilizing Mn-rich phosphate cathodes. Chem Sci. 2023;14:8662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou JR, Hadouchi M, Sui LJ, Liu J, Tang MX, Kan WH, Avdeev M, Zhong GM, Liao YK, Lai YH, Chu YH, Lin HJ, Chen CT, Hu ZW, Huang YH, Ma JW. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2021;42:307.

    Article  Google Scholar 

  21. Gao HC, Seymour ID, Xin S, Xue LG, Henkelman G, Goodenough JB. Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. J Am Chem Soc. 2018;140:18192.

    Article  CAS  PubMed  Google Scholar 

  22. Gao HC, Li YT, Park K, Goodenough JB. Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater. 2016;28:6553.

    Article  CAS  Google Scholar 

  23. Zhu T, Hu P, Wang XP, Liu ZH, Luo W, Owusu KA, Cao WW, Shi CW, Li JT, Zhou L, Mai LQ. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv Energy Mater. 2019;9:1803436.

    Article  Google Scholar 

  24. Zhang J, Liu YC, Zhao XD, He LH, Liu H, Song YZ, Sun SD, Li Q, Xing XR, Chen J. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv Mater. 2020;32:1906348.

    Article  CAS  Google Scholar 

  25. Zheng YR, Liu JF, Huang D, Chen HD, Hou XH. Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries. Surf Interfaces. 2022;32:102151.

    Article  CAS  Google Scholar 

  26. Liu JF, Lin KS, Zhao Y, Zhou Y, Hou XH, Liu X, Lou HT, Lam K, Chen FM. Exceeding three-electron reactions in Na3+2xMn1+xTi1-x(PO4)3 NASICON cathodes with high energy density for sodium-ion batteries. J Mater Chem A. 2021;9:10437.

    Article  CAS  Google Scholar 

  27. Zhou WD, Xue LG, Lü XJ, Gao HC, Li YT, Xin S, Fu GT, Cui ZM, Zhu Y, Goodenough JB. NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and properties for sodium extraction. Nano Lett. 2016;16:7836.

    Article  CAS  PubMed  Google Scholar 

  28. Xu CL, Xiao RJ, Zhao JM, Ding FX, Yang Y, Rong XH, Guo XD, Yang C, Liu HZ, Zhong BH, Hu YS. Mn-Rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2021;7:97.

    Article  Google Scholar 

  29. Li HX, Jin T, Chen XB, Lai YQ, Zhang ZA, Bao WZ, Jiao LF. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv Energy Mater. 2018;8:1801418.

    Article  Google Scholar 

  30. Lei P, Liu KL, Wan X, Luo DX, Xiang XD. Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem Commun. 2019;55:509.

    Article  CAS  Google Scholar 

  31. Zhu L, Zhang MJ, Yang LX, Zhou KX, Wang Y, Sun D, Tang YG, Wang HY. Engineering hierarchical structure and surface of Na4MnV(PO4)3 for ultrafast sodium storage by a scalable ball milling approach. Nano Energy. 2022;99:2100729.

    Article  Google Scholar 

  32. Soundharrajan V, Alfaruqi MH, Lee S, Sambandam B, Kim S, Kim S, Mathew V, Pham DT, Hwang JY, Sun YK, Kim J. Multidimensional Na4VMn0.9Cu0.1(PO4)3/C cotton-candy cathode materials for high energy Na-ion batteries. J Mater Chem A. 2020;8:12055.

    Article  CAS  Google Scholar 

  33. Xu CL, Zhao JM, Wang EH, Liu XH, Shen X, Rong XH, Zheng Q, Ren GX, Zhang N, Liu XS, Guo XD, Yang C, Liu HZ, Zhong BH, Hu Y-S. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv Energy Mater. 2021;11:2100729.

    Article  CAS  Google Scholar 

  34. Wu YH, Meng XH, Yan LJ, Kang QL, Du HW, Wan CB, Fan MQ, Ma TL. Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J Mater Chem A. 2022;10:21816.

    Article  CAS  Google Scholar 

  35. Soundharrajan V, Nithiananth S, Sakthiabirami K, Kim JH, Su CY, Chang JK. The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: a focused review. J Mater Chem A. 2022;10:1022.

    Article  CAS  Google Scholar 

  36. Wang HB, Chen C, Qian C, Liang CD, Lin Z. Symmetric sodium-ion batteries based on the phosphate material of NASICON-structured Na3Co0.5Mn0.5Ti(PO4)3. RSC Adv. 2017;7:33273.

    Article  CAS  Google Scholar 

  37. Niu YB, Zhao YN, Xu MW. Manganese-based polyanionic cathodes for sodium-ion batteries. Carbon Neutralization. 2023;2:150.

    Article  Google Scholar 

  38. Ma XM, Cao XX, Zhou YF, Guo S, Shi XD, Fang GZ, Pan AQ, Lu BA, Zhou J, Liang SQ. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 2020;13:3330.

    Article  CAS  Google Scholar 

  39. Zhang JS, Liang GS, Wang C, Lin CF, Chen JJ, Zhang ZR, Zhao XS. Revisiting the stability of the Cr4+/Cr3+ redox couple in sodium superionic conductor compounds. ACS Appl Mater Interfaces. 2020;12:28313.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang N, Yang C, Wang YC, Wang XY, Liu JH, Liu Y. A Mn-based ternary NASICON-type Na3.5MnTi0.5Cr0.5(PO4)3/C cathode for high-performance sodium-ion batteries. Energy Storage Mater. 2023;63:102987.

    Google Scholar 

  41. Liu JP, Huang Y, Zhao ZX, Ren WH, Li ZZ, Zou C, Zhao L, Tang ZM, Li X, Wang MS, Lin YH, Cao HJ. Yeast template-derived multielectron reaction NASICON structure Na3MnTi(PO4)3 for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2021;13:58585.

    Article  CAS  PubMed  Google Scholar 

  42. Liu JF, Zhao Y, Huang XF, Zhou Y, Lam K, Yu DYW, Hou XH. NASICON-structured Na3MnTi(PO4)2.83F0.5 cathode with high energy density and rate performance for sodium-ion batteries. Chem Eng J. 2022;435:134839.

    Article  CAS  Google Scholar 

  43. Zhu T, Hu P, Cai CC, Liu ZA, Hu GW, Kuang Q, Mai LQ, Zhou L. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy. 2020;70:2003256.

    Article  Google Scholar 

  44. Liu R, Zheng SY, Yuan YF, Yu PF, Liang ZT, Zhao WM, Shahbazian-Yassar R, Ding JX, Lu J, Yang Y. Counter-intuitive structural instability aroused by transition metal migration in polyanionic sodium ion host. Adv Energy Mater. 2020;11:2003256.

    Article  Google Scholar 

  45. Cao XW, Ma C, Luo L, Chen L, Cheng H, Orenstein RS, Zhang XW. Nanofiber materials for lithium-ion batteries. Adv Fiber Mater. 2023;5:1141.

    Article  CAS  Google Scholar 

  46. Ren W, Qin ML, Zhou YF, Zhou H, Zhu J, Pan JA, Zhou J, Cao XX, Liang SQ. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Mater. 2023;54:776.

    Article  Google Scholar 

  47. Zhao YJ, Gao XW, Gao HC, Jin HB, Goodenough JB. Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv Funct Mater. 2020;30:1908680.

    Article  CAS  Google Scholar 

  48. Chen MZ, Hua WB, Xiao J, Zhang JL, Lau VW, Park M, Lee GH, Lee S, Wang WL, Peng J, Fang L, Zhou LM, Chang C-K, Yamauchi Y, Chou SL, Kang YM. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J Am Chem Soc. 2021;143:18091.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Liu YK, He PG, Jin JT, Zhao XD, Shen QY, Li J, Qu XH, Liu YC, Jiao LF. “Win-Win” scenario of high energy density and long cycling life in a novel Na3.9MnCr0.9Zr0.1(PO4)3 cathode. Energy Environ Mater. 2023. https://doi.org/10.1002/eem2.12519.

    Article  Google Scholar 

  50. Li J, Zhao XD, He PG, Liu YK, Jin JT, Shen QY, Wang Y, Li SW, Qu XH, Liu YC, Jiao LF. Stabilized multi-electron reactions in a high-energy Na4Mn0.9CrMg0.1(PO4)3 sodium-storage cathode enabled by the pinning effect. Small. 2022;18:2202879.

    Article  CAS  Google Scholar 

  51. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901.

    Article  CAS  Google Scholar 

  52. Chen F, Kovrugin VM, David R, Mentré O, Fauth F, Chotard JN, Masquelier C. A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3. Small Methods. 2018;3:1800218.

    Article  Google Scholar 

  53. Zhao AL, Yuan TC, Li P, Liu CY, Cong HJ, Pu XJ, Chen ZX, Ai XP, Yang HX, Cao YL. A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy. 2022;91:106680.

    Article  CAS  Google Scholar 

  54. Chen MZ, Hua WB, Xiao J, Cortie D, Chen WH, Wang EH, Hu Z, Gu QF, Wang XL, Indris S, Chou S-L, Dou S-X. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat Commun. 2019;10:1480.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li HX, Xu M, Gao CH, Zhang W, Zhang ZA, Lai YQ, Jiao LF. Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Storage Mater. 2020;26:325.

    Article  Google Scholar 

  56. Wang FF, Zhang N, Zhao XD, Wang LX, Zhang J, Wang TS, Liu FF, Liu YC, Fan LZ. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics. Adv Sci. 2019;6:1900649.

    Article  Google Scholar 

  57. Wang YY, Hou BH, Guo JZ, Ning QL, Pang WL, Wang JW, Lü CL, Wu XL. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv Energy Mater. 2018;8:1703252.

    Article  Google Scholar 

  58. Ghosh S, Kumar VK, Kumar SK, Biswas S, Martha SK. An insight of sodium-ion storage, diffusivity into TiO2 nanoparticles and practical realization to sodium-ion full cell. Electrochim Acta. 2019;316:69.

    Article  CAS  Google Scholar 

  59. Tang LB, Zhang JH, Li Z, Liu XH, Xu QJ, Liu HM, Wang YG, Xia YY, Ma ZF. Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. J Power Sources. 2020;451:227734.

    Article  CAS  Google Scholar 

  60. Ren WH, Yao XH, Niu CJ, Zheng ZP, Zhao KN, An QY, Wei QL, Yan MY, Zhang L, Mai LQ. Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy. 2016;28:216.

    Article  CAS  Google Scholar 

  61. Peng B, Sun ZH, Zhao LP, Li J, Zhang GQ. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 35 V. Energy Storage Mater. 2021;35:620.

    Article  Google Scholar 

  62. Zhou Y, Shao XJ, Lam K, Zheng Y, Zhao LZ, Wang KD, Zhao JZ, Chen FM, Hou XH. Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material. ACS Appl Mater Interfaces. 2020;12:30328.

    Article  CAS  PubMed  Google Scholar 

  63. Hu HY, Xiao Y, Ling W, Wu YB, Wang P, Tan SJ, Xu YS, Guo YJ, Chen WP, Tang RR, Zeng XX, Yin YX, Wu XW. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery. Energy Technol. 2020;9:2000730.

    Article  Google Scholar 

  64. Rui XH, Zhang XH, Xu ST, Tan HT, Jiang Y, Gan LY, Feng YZ, Li CC, Yu Y. A low-temperature sodium-ion full battery: superb kinetics and cycling stability. Adv Funct Mater. 2020;31:2009458.

    Article  Google Scholar 

  65. Chen CC, Li TJ, Tian H, Zou YB, Sun JC. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. J Mater Chem A. 2019;7:18451.

    Article  CAS  Google Scholar 

  66. Wang HB, Xiao YZ, Sun C, Lai C, Ai XP. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. RSC Adv. 2015;5:106519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52302304, 52102299, 52102295), the Guangdong Basic and Applied Basic Research Foundation (2021A1515110059), the Natural Science Foundation of Hubei Provincial (2023AFB999), and the Fundamental Research Funds for the Central Universities (WUT: 2021IVA034B, 2022-xcs4), Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (520LH055), the Sanya Science and Education Innovation Park of Wuhan University of Technology (2021KF0019).

Funding

National Natural Science Foundation of China, 52302304, Ping Hu, 52102299, Ting Zhu, 52102295, Liyan Yang, Guangdong Basic and Applied Basic Research Foundation, 2021A1515110059, Ping Hu, Natural Science Foundation of Hubei Provincial, 2023AFB999, Ping Hu, Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City, 520LH055, Xuanpeng Wang, Sanya Science and Education Innovation Park of Wuhan University of Technology, 2021KF0019, Xuanpeng Wang

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Ping Hu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Liu, W., Liao, X. et al. A Novel NASICON-Type Na3.5MnCr0.5Ti0.5(PO4)3 Nanofiber with Multi-electron Reaction for High-Performance Sodium-Ion Batteries. Adv. Fiber Mater. 6, 561–569 (2024). https://doi.org/10.1007/s42765-023-00367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00367-4

Keywords

Navigation