Skip to main content
Log in

Full-Color Tunable and Highly Fire-Retardant Colored Carbon Fibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Carbon fibers (CFs) are widely used in various cutting-edge fields, such as aerospace, military, automobiles, and sports, owing to their unique combination of excellent mechanical properties, good thermal stability, and lightweight. However, their inherent super-black appearance makes it difficult to satisfy the aesthetic/fashion requirements of the colorful world, and the flammability of CFs severely limits their practical utilization in high-temperature and other extreme environments. Herein, we fabricated full-color tunable colored CFs on a large-scale via atomic layer deposition, based on the monolayer film interference strategy. CFs exhibited brilliant colors and excellent environmental durability in extreme environments, such as intense ultraviolet (UV) irradiation, accelerated laundering, friction, high-temperature, and low-temperature treatments. Colored CFs also exhibited excellent fire-retardant performance that could withstand alcohol-lamp flame burning for 60 min. Our work provides insights into an innovative material/structural design that can help achieve rapid development of the CF industry and global carbon neutrality/sustainability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on request.

References

  1. Picheau E, Hof F, Derré A, Derre B, Penicaud A. Thermal oxidation of carbonaceous nanomaterials revisited: evidence of mechanism changes. Angew Chem Int Ed. 2019;131:16013.

    Article  Google Scholar 

  2. Fang Y, Liu Y, Qi L. 2D graphdiyne: an emerging carbon material. Chem Soc Rev. 2022;51:2681.

    Article  CAS  Google Scholar 

  3. Li KM, Ni XP, Wu QQ, Yuan CS, Li CL, Li D, Chen HF, Lv YG, Ju AQ. Carbon-based fibers: fabrication, characterization, and application. Adv Fiber Mater. 2022;4:631.

    Article  CAS  Google Scholar 

  4. Frank E, Steudle LM, Ingildeev D. Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chem Int Ed. 2014;53:5262.

    Article  CAS  Google Scholar 

  5. Kim JW, Lee JS. Preparation of carbon fibers from linear low-density polyethylene. Carbon. 2015;94:524.

    Article  CAS  Google Scholar 

  6. Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng. 2012;297:493.

    Article  CAS  Google Scholar 

  7. Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 2012;52:234.

    Article  CAS  Google Scholar 

  8. Konwar LJ, Mäki–Arvela P, Mikkola JP. SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis. Chem Rev. 2019;119:11576.

    Article  CAS  Google Scholar 

  9. Duan X, Sun H, Wang S. Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res. 2018;51:678.

    Article  CAS  Google Scholar 

  10. Wang T, Okejiri F, Qiao ZA. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions. Adv Mater. 2020;32:2002475.

    Article  Google Scholar 

  11. Chen Y, Wei J, Duyar MS, Ordomsky VV, Khodakov Y, Liu J. Carbon-based catalysts for fischer-tropsch synthesis. Chem Soc Rev. 2021;50:2337.

    Article  CAS  Google Scholar 

  12. Mann FA, Galonska P, Herrmann N, Kruss S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat Protoc. 2022;17:727.

    Article  CAS  Google Scholar 

  13. Lin Z, Jia X, Yang J, Li Y, Wang S. High structural stability of colored carbon fiber cloths modified by FeOOH. Appl Surf Sci. 2021;545:148994.

    Article  CAS  Google Scholar 

  14. Chen FX, Huang Y, Li R, Zhang SL, Jiang QY, Luo YX, Wang BS, Zhang WS, Wu XK, Wang F, Lyu P, Zhao SM, Xu WL, Wei F, Zhang RF. Superdurable and fire-retardant structural coloration of carbon nanotubes. Sci Adv. 2022;8:5882.

    Article  Google Scholar 

  15. Zuo J, Tu L, Li Q, Feng Y, Que I, Zhang Y, Liu X, Xue B, Cruz LJ, Chang Y, Zhang H, Kong X. Near infrared light sensitive ultraviolet-blue nanophotoswitch for imaging-guided “off-on” therapy. ACS Nano. 2018;12:3217.

    Article  CAS  Google Scholar 

  16. Land MF. The physics and biology of animal reflectors. Prog Biophys Mol Biol. 1972;24:75.

    Article  CAS  Google Scholar 

  17. Vukusic P, Sambles JR, Lawrence CR. Colour mixing in wing scales of a butterfly. Nature. 2000;404:457.

    Article  CAS  Google Scholar 

  18. Parker AR, Welch VL, Driver D, Martini N. Opal analogue discovered in a weevil. Nature. 2003;426:786.

    Article  CAS  Google Scholar 

  19. Chen FX, Huang Y, Li R, Zhang SL, Wang BS, Zhang WS, Wu XK, Jiang QY, Wang F, Zhang RF. Bio-inspired structural colors and their applications. Chem Commun. 2021;57:13448.

    Article  CAS  Google Scholar 

  20. Prum RO, Dufresne ER, Quinn T, Waters K. Development of colour-producing β-keratin nanostructures in avian feather barbs. J R Soc Interface. 2009;6:253.

    Article  Google Scholar 

  21. Parker AR. Natural photonic engineers. Mater Today. 2002;5:26.

    Article  CAS  Google Scholar 

  22. Vukusic P, Sambles JR. Photonic structures in biology. Nature. 2003;424:852.

    Article  CAS  Google Scholar 

  23. Lee LP, Szema R. Inspirations from biological optics for advanced photonic systems. Science. 2005;310:1148.

    Article  CAS  Google Scholar 

  24. Zhou N, Zhang A, Shi L, Zhang KQ. Fabrication of structurally-colored fibers with axial core–shell structure via electrophoretic deposition and their optical properties. ACS Macro Lett. 2013;2:116.

    Article  CAS  Google Scholar 

  25. Chen FX, Yang HY, Li K, Deng B, Li QS, Liu X, Dong BH, Xiao XF, Wang D, Qin Y, Wang SM, Zhang KQ, Xu WL. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability. ACS Nano. 2017;11:10330.

    Article  CAS  Google Scholar 

  26. Zhao K, Cheng J, Sun N, Wang YP, Huang HL, Zhang SF, Niu WB. Photonic janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices. Adv Mater Technol. 2022;7:2101057.

    Article  CAS  Google Scholar 

  27. Chen FX, Yang HY, Liu X, Chen DZF, Liu KS, Li J, Cheng F, Deng BH, Zhou YS, Guo ZG, Qin Y, Wang SM, Xu WL. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability. ACS Appl Mater Interfaces. 2016;8:5653.

    Article  CAS  Google Scholar 

  28. Chen FX, Liu X, Yang HY, Deng B, Zhou YS, Chen DZ, Hu H, Xiao XF, Fan DF, Zhang CH, Cheng F, Cao YH, Yuan T, Liang ZH, Li J, Wang SM, Xu WL. A simple one-step approach to fabrication of highly hydrophobic silk fabrics. Appl Surf Sci. 2016;360:207.

    Article  CAS  Google Scholar 

  29. Chen FX, Yang HY, Li K, Liu X, Deng B, Xiao XF, Yang XJ, Dong BH, Wang SM, Xu WL. Exceptional wearability of multifunctional TiO2-coated hybrid silk fabric with controllable UV-protection properties. Text Res J. 2018;88:2757.

    Article  CAS  Google Scholar 

  30. Yang HY, Yu ZW, Li K, Jiang L, Liu X, Deng B, Chen FX, Xu WL. Facile and effective fabrication of highly UV-resistant silk fabrics with excellent laundering durability and thermal and chemical stabilities. ACS Appl Mater Interfaces. 2019;11:27426.

    Article  CAS  Google Scholar 

  31. Yang HY, Wang YL, Liu KS, Liu X, Chen FX, Xu WL. Facile fabrication of ultraviolet-protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxane modification. Text Res J. 2019;89:3529.

    Article  CAS  Google Scholar 

  32. Liang ZH, Zhou ZZ, Li J, Zhang SL, Dong BH, Zhao L, Wu CC, Yang HY, Chen FX, Wang SM. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem Eng J. 2021;415:128980.

    Article  CAS  Google Scholar 

  33. Wang BB, Fu QG, Yin T, Li HJ, Qi LH, Fu YW. Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites. Carbon. 2018;139:45.

    Article  CAS  Google Scholar 

  34. Kim IS, Haasch RT, Cao DH, Farha OK, Hupp JT, Kanatzidis MG. Amorphous TiO2 compact layers via ALD for planar halide perovskite photovoltaics. ACS Appl Mater Interfaces. 2016;8:24310.

    Article  CAS  Google Scholar 

  35. Chen ZL, Wu RB, Liu M, Wang H, Xu HB, Guo YH, Song Y, Fang F, Yu XB, Sun DL. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv Funct Mater. 2017;27:1702046.

    Article  Google Scholar 

  36. Peng T, Yi H, Sun P, Jing Y, Wang R, Wang H. In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. J Mater Chem A. 2016;4:8888.

    Article  CAS  Google Scholar 

  37. Ma JJ, He YS, Zhang WM, Wang JL, Yang XW, Liao XZ, Ma ZF. An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy. 2015;16:235.

    Article  CAS  Google Scholar 

  38. Parker AR, Townley HE. Biomimetics of photonic nanostructures. Nat Nanotechnol. 2007;2:347.

    Article  CAS  Google Scholar 

  39. Noh H, Liew SF, Saranathan V, Saranathan V, Mochrie SGJ, Prum RO, Dufresne ER, Cao H. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv Mater. 2010;22:201090094.

    Article  Google Scholar 

  40. Jacucci G, Vignolini S, Schertel L. The limitations of extending nature’s color palette in correlated, disordered systems. Proc Natl Acad Sci. 2020;117:23345.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Huang from Tsinghua University for the help in characterizing colored CFs samples. Funding: This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51903008 and U1910209), Science and Technology Research Project of the Educational Commission of Hubei Province (D20211703), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2023433), and Natural Science Foundation of Shanxi Province (Grant No. 20210302124128). Open Foundation of State Key Laboratory of Bio-Fibers and Eco-Textiles from Qingdao University (Grant No. 2020105), Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University (Grant No. DTL 2022006), National Engineering Laboratory for Modern Silk, Soochow University (Grant No. SDGC2148), and National Local Joint Laboratory for Advanced Textile Processing and Clean Production (Grant No. 17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shichao Zhao, Fengxiang Chen or Weilin Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5764.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhang, Y., Xing, T. et al. Full-Color Tunable and Highly Fire-Retardant Colored Carbon Fibers. Adv. Fiber Mater. 5, 1618–1631 (2023). https://doi.org/10.1007/s42765-023-00294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00294-4

Keywords

Navigation